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Abstract

This Thesis deals with the forecasts of inflation in the Euro Area
made by experts (Survey of Professional Forecasters by the ECB),
explores their properties such as stickiness and compares them to
the machine-made forecasts on various horizons. Machine Learning
predictions are made using Random Forest and Ridge regressions.
We find that the machine-made predictions are generally more accu-
rate than the Forecasters’ predictions. This superior performance is
mostly explained by the shift in inflation paradigm that happened in
the post-Covid period that the machine learning models were able to
foresee to a significantly higher degree than the Forecasters.
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1 Introduction

Inflation is the key macroeconomic variable which is central to all eco-
nomic agents behaviour. Inflation may impact consumers’ finances, firms’
decision making, the sentiment of the financial markets, etc. As it is cru-
cial for the economy, inflation is also the main driver of the central banks’
decisions. To keep the economy stable, they aim to keep the inflation at
the long-term target rate, which is usually around 1.5-2% in the developed
countries. To keep the inflation in check, the central banks use a variety of
instruments such as policy rates which ultimately affect the real economy.
It is then only natural that accurate forecasts of inflation are of utmost im-
portance. To this date, inflation predictions made by experts are often used
as a benchmark for inflation expectations. Not only that, Machine Learn-
ing is increasingly used to predict inflation as well.

In this work, we would like to explore the properties of inflation forecasts
made by professionals and compare them to the Machine Learning predic-
tions. We would like to see if humans are biased in their predictions, and
if humans, as well as machines, can react to shifts in inflation paradigms
as happened recently in the post-Covid period. In this work, we focus on
the Euro Area.

A central piece in our work is the data from the ECB Survey of Professional
Forecasts (SPF). It contains macroeconomic forecasts of experts (Forecast-
ers) working in financial or non-financial institutions. This data provides
a good benchmark for inflation expectations of professional analysts and
allows us to look for patterns, and compare human performance to ma-
chine performance. The data spans from 1999 to 2022. The Forecasters’
predictions are made on various horizons. We begin this work by describ-
ing this extensive data-set in the Section Forecasts Data Description.

The Survey of Professional Forecasters (SPF) in the Euro area has been
explored in a number of papers. In particular, Geoff, Genre, Bowles, Friz,
Meyler, & Rautanen (2007) wrote a review on the SPF after 8 years of expe-
rience for the ECB Occasional Paper Series. In particular, they found that,
over the sample period, the Forecasters systematically underestimated the
inflation. Using statistical tests, they find strong evidence that the SPF ag-
gregate inflation forecasts were biased. However, Geoff, Genre, Bowles, Friz,
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Meyler, & Rautanen (2007) treat their results with caution, as the sample
period is not only relatively short, but also contained a number of hardly
predictable inflationary shocks. We find the same pattern over our sample
period, which is a considerably longer one. We connect it to the post-
Covid inflation, which came as an unprecedented upward shock. When
looking at the pre-Covid period, the bias is less pronounced.

Forecasters are likely are a heterogeneous group of experts. It is plau-
sible that some Forecasters possess superior prediction capabilities and
consistently outperform their peers. Conversely, some of the experts may
consistently produce low-quality predictions due to a number of factors
such as inattentiveness or poor understanding of inflation dynamics. We
call these 2 Forecasters pools ’Star’ and ’Underperformers’ respectively.
We find the ’Star’ and the ’Underperformers’ groups of Forecasters data
in the Section Forecasters’ Classification on the criterion of predictions’ ac-
curacy for each horizon. Top 10% Forecasters for each horizon are placed
into the ’Star’ group, bottom 10% for each horizon are placed into the ’Un-
derperformers’ group.

Stickiness is a well-known property of forecasts. Forecasters may ’stick’ to
their previous forecasts by being inattentive and not updating their infor-
mation sets. In the Section Stickiness of Forecasters, we check if and how
sticky the SPF forecasts are. We find that the forecasts are sticky on many
of the horizons, and that the stickiness degree varies between horizons.
Moreover, the stickiness degree varies among Forecasters, some of whom
exhibit almost constant levels of stickiness for a given horizon. Further-
more, Forecasters incorporate new information better in recessions than
in expansions.

Our central objective is to compare human and machine-made forecasts.
To generate machine-made predictions, we use Machine Learning models,
namely the Ridge Regression and the Random Forest Regression. We thor-
oughly describe our Machine Learning approach, including the choice of
predictor variables, in the Section Machine Learning Models.

Our findings in the Subsection General Case of the Section Results indicate
that the Ridge Regression outperforms both the Forecasters and the Ran-
dom Forest Regressions in predicting inflation on most of the horizons.
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We also compare the performance of ’Star’ Forecasters and the Machine
Learning models. ’Star’ Forecasters performance is on par with the Ridge
Regression performance on the short-term horizons, suggesting that ’Star’
Forecasters may indeed possess superior forecasting capabilities and the
ability to use more relevant information for forecasts than the general pool
of Forecasters. We proceed to assuming that Ridge Regression represents
the rational prediction and find the Forecasters’ bias on the 1 rolling year
and 2 rolling years horizons to be strongly negative. We partially link the
negativity to the post-Covid upward inflation shock that the Forecasters
may have failed to capture.

A key point to be addressed in our analysis is the shift in inflation regimes
that happened in the post-Covid period. It might be possible that the
Forecasters did not fully realise the shift in paradigms and / or that the
machine is unable to fully capture the shift in frameworks. To analyse
the pre-Covid and the post-Covid performance, we split the test data into
2 subsets encompassing low and high inflation regimes. Then, human
and machine-made predictions are compared in the Subsection High vs
Low Inflation Regimes of the Section Results. This subsection presents a
slightly different picture from the Subsection General Case. In the pre-
Covid period, the Ridge Regression does not outperform the Forecasters
on most of the horizons. This may be connected to the nature of these hori-
zons, as those on which Forecasters outperform the machine, have limited
data, not allowing the model to reach its full potential during training.
Still, the ’Star’ Forecasters exhibit a better performance than the Machine
Learning models on one of the 2 horizons where the sample size was big
enough for training. As for the post-Covid period, Ridge Regression per-
formance is significantly better than the Forecasters’ performance. Fore-
casters have likely not adapted to the shift in paradigm and did not up-
date their information sets, exhibiting stickiness. Adaptability of the Ridge
Regression permits it to capture such change in trends significantly better
than humans. As for the ’Star’ Forecasters, they have exhibited the least
stickiness and were able to foresee the regime shift better than the general
group of Forecasters. We propose that the best experts in the field remain
such thanks to their ability to capture and use new information. Over-
all, the performance of the ’Star’ Forecasters does not lag as far behind
from the performance of the Ridge regression as the performance of all
Forecasters. ’Star’ Forecasters’ edge can be explained by many factors: su-
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perior understanding of inflation-forming mechanisms and relationships
between different macroeconomic variables, access to the extra informa-
tion that the machine does not get in the form of features (i.e. news, peo-
ple’s sentiment, etc). However, machine’s clear advantage is in the lack of
stickiness and in its responsiveness to new information.

Bias of human analysts has already been explored by van Binsbergen, Han,
and Lopez-Lira (2022) who introduced ”a real-time measure of conditional
biases to firms’ earnings forecasts”. The measure consists of the difference
between analysts’ expectations and statistically optimal unbiased Machine
Learning benchmark. In their work, they use Random Forest regression as
their primary unbiased machine-made forecast benchmark. This enables
van Binsbergen, Han, and Lopez-Lira (2022) to compute the real-time esti-
mated analysts’ bias. Our approach is similar, as we treat the machine
made forecasts as rational and compute biases of Forecasters for two of
the horizons in the Section Results. Moreover, van Binsbergen, Han, and
Lopez-Lira (2022) find that analysts are generally upwardly biased, thus
overly optimistic in case of earnings’ forecasts. We are unable to give a
conclusive answer as to whether in our data Forecasters are upwardly or
downwardly biased in relation to the rational predictions. In fact, we find
that the bias depends on horizon.

Our work is also closely related to Coibion and Gorodnichenko (2015) who
introduced a new approach to test the degree of the stickiness of forecasts
which we use in this work. Coibion and Gorodnichenko (2015)’s approach
consists in testing the null hypothesis of full-information rational expecta-
tions by relating mean forecasts errors to subsequent forecasts revisions.
In a full-information rational expectations framework, there should be no
relation between these 2 variables. However, they find there usually is and
this relationship is linked one-to-one to the degree of information rigidity
(stickiness). Coibion and Gorodnichenko (2015) focus on the inflation expec-
tations data from the Survey of Professional Forecasters in the U.S. with
sample period from 1969 to 2010. They estimate the degree of informa-
tion rigidity to be positive, and we get similar results using the European
data in this work. Coibion and Gorodnichenko (2015) also study if sticki-
ness varies with economic conditions, and find that it increases in times
of lower volatility, which coincides with our results for expansions and re-
cessions.
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Genre, Kenny, Meyler, and Timmermann (2013) explored various techniques
(principal components and trimmed means, performance-based weight-
ing, etc) of combining SPF individual forecasts to obtain better perfor-
mance than the simple average performance. Even though they treat the
results with caution, they find the strongest evidence for improvement for
the inflation forecasts. In the Section Conclusion of our work, we hypoth-
esize that combining professional forecasts with machine forecasts using
some of the sophisticated techniques from Genre, Kenny, Meyler, and Tim-
mermann (2013) may produce superior inflation predictions.

2 Forecasts Data Description

In this Section, we aim to describe the inflation forecasts data. We use
the Survey of Professional Forecasters (SPF) from the ECB. This Survey
is a comprehensive source of macroeconomic expectations for the Euro
Area and has been conducted quarterly since 1999. The Survey provides
not only forecasts for the Euro Area HICP inflation, but also expectations
for Euro Area unemployment and GDP growth. However, for our anal-
ysis, we focus solely on the Euro Area inflation forecasts. According to
the ECB, respondents of the Survey are experts of the financial or non-
financial institutions. Each respondent (Forecaster) has a unique identifi-
cation number, so that their answer can be traced across Surveys. Total
number of Forecasters is 135, although it is unlikely that all of them par-
ticipated in a given single Survey. The data we use spans from Quarter
1 1999 to Quarter 3 2022. The Survey collects HICP inflation expectations
at various horizons, including the current calendar year, the next calendar
year, the calendar year in 2 years, the calendar year in 4 years, the calendar
year in 5 years, as well as 1 rolling year ahead, 2 rolling years ahead, and
5 rolling years ahead horizons.
For the realised inflation rates data, we use the Euro Area HICP inflation
data from the ECB.
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For our analysis, we create customised horizons based on the calen-
dar year horizons in the Survey. For example, we form horizons of 2
months (available only in Quarter 4 as it represents the current calendar
year forecast made in Q4 with 2 months remaining until the year-end), 5
months (available in Q3), 7 months (available in Q2), and so on. Below is
a schematic depiction of selected horizons:

We compare the consensus inflation expectations with the realised infla-
tion rates graphically at selected horizons:
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As expected, quality of forecasts generally decreases with horizon. On the
short-term horizons, Forecasters are quite reactive to shocks and change
their estimates often. However, their long-term expectations appear to be
anchored. The Forecasters consistently expect the long-term inflation to
be between 1.5% and 2.0%. Forecasters appear to deviate very little from
this target value on longer-term horizons. Due to this, we would like to
explore the standard deviations of forecasts. There are 2 qualitatively dif-
ferent ways to do so on this type of data: a) find the average standard
deviation between Forecasters by finding the standard deviation for each
forecast date and then taking the average (Mean Standard Deviation) b)
find the average standard deviation between forecasts made at different
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dates by taking the standard deviation between the aggregate forecasts
for each date (Standard Deviation of Mean). The former measure can tell
us how much do Forecasters agree with each other on average, while the
latter provides the variability of the consensus expectations over time. The
degree to which Forecasters agree with each other on average can give us
valuable insights on how heterogeneous the Forecasters are, and whether
there are disagreements among experts. We report both measures for all
horizons for which we have enough data. We also report the mean forecast
for each horizon over the sample period to have a better understanding of
the data.

Horizon Mean Mean Standard Deviation Standard Deviation of Mean

1 rolling year 1.59 0.3 0.31
2 rolling years 1.71 0.26 0.19

2 months 1.95 0.11 1.61
5 months 1.91 0.16 1.43
8 months 1.77 0.21 1.16

11 months 1.58 0.23 0.6

14 months 1.63 0.22 0.39

17 months 1.63 0.24 0.36

20 months 1.63 0.26 0.28

23 months 1.62 0.26 0.23

26 months 1.7 0.23 0.2

29 months 1.74 0.24 0.19

Standard deviation of the mean decreases with horizon. Longer-term ex-
pectations change little over time, and the Forecasters always expect infla-
tion to converge very close to the target level. The short-term expectations
(less than 1 year horizon) follow the realised inflation more closely and
vary with it, hence their higher standard deviation. The short-term expec-
tations react to shocks, while the long-term expectations reveal Forecast-
ers’ confidence in the ability of the ECB to bring the inflation to the target
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level.

As for the mean standard deviation, there is a general trend: as horizon
goes up, uncertainty goes up. There are more disagreements and different
opinions among Forecasters on longer-term horizons. It also appears that
the standard deviation goes down for the longest horizons. This could be
a coincidence or caused by attentiveness decreasing for the longest hori-
zons, decreasing evident disagreements.

Geoff, Genre, Bowles, Friz, Meyler, & Rautanen (2007) study the errors of
the aggregate SPF inflation forecasts and find that, over their sample pe-
riod, the Forecasters tended to underestimate the inflation. They show
that the mean error (ME), which they define to be equal to the average
difference between inflation realisation and aggregate forecast, is posi-
tive for the 1 rolling year and 2 rolling years horizons. If the Forecast-
ers are unbiased and the shocks to inflation are symmetric, then the ME
is expected to be equal to 0 over a long time period. In the Geoff, Genre,
Bowles, Friz, Meyler, & Rautanen (2007)’s work, the sample period is not
long enough and they highlight that the inflation shocks seen during that
period were upward and hardly predictable, which would explain the
positive errors. We would like to repeat the exercise as we have a longer
sample period covering several business cycles at our disposal. Special
attention should be paid to the post-Covid period as it represents a pe-
riod of an unprecedented upward inflation shock. Unprecedented infla-
tion started in September 2021, which we mark as the start of the post-
Covid inflation period. We measure the ME for the 1 rolling year and the
2 rolling years prediction horizons for the whole sample period, and for
the pre-Covid / post-Covid periods separately. In our case, the mean error
is defined as the average difference between mean forecast and inflation
realisation, thus the signs of errors would be the opposite to the signs in
Geoff, Genre, Bowles, Friz, Meyler, & Rautanen (2007).

Horizon Overall ME Pre-Covid ME Post-Covid ME

1 rolling year −0.44 −0.07 −5.81
2 rolling years −0.31 0.09 −5.9

Strongly negative post-Covid MEs are expected and can be fully linked
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to the unprecedented upward inflation shock that happened in the 2021-
2022 period. In the subsequent sections, we will explore if this shock
was predictable to a degree. Overall, as the MEs are likely strongly af-
fected by the post-Covid data points, looking at the pre-Covid MEs is
preferred to get a more objective picture and remove the largest shock
in the data. Forecasters appear to be biased in different directions when
it comes to these two prediction horizons. Forecasters underestimate the
inflation for the 1 rolling year horizon and overestimate the inflation for
the 2 rolling years horizon. This may be partially explained by the prop-
erties of these horizons and by the Euro Area inflation dynamics. Mean
forecast is higher for the 2 rolling years horizon than for the 1 rolling year
horizon. Additionally, the standard deviation of mean is lower for the
2 rolling years prediction horizon. Before Covid, the Euro Area inflation
seldom reached or exceeded the target rate of 2%. Moreover, several disin-
flationary periods happened (2014-2016, 2009-2010) in the sample period.
For the longer-term horizon of 2 years, the Forecasters have not revised
their expectations downwards enough and maintained predicting infla-
tion convergence close to the target rate, causing slight positive bias. For
the 1 rolling horizon, the Forecasters have been slightly more responsive
to changes in inflation signals and deviated more from the target level, but
have failed to capture some upward inflation shocks.
However, both MEs are close to 0 over this long-term period, so Forecast-
ers’ bias appears to be small, when excluding the post-Covid shock. The
differences in the MEs for these 2 horizons highlight the complexity linked
to inflation forecasting.

3 Forecasters’ Classification

We suppose that the quality of forecasts varies from one Forecaster to
another. We also suppose that the quality of forecasts is not random and is
consistent for a given Forecaster over time. Thus, there should exist ’Star’
Forecasters whose predictions are consistently better comparing to the ag-
gregate predictions among Forecasters. These ’Star’ Forecasters may have
superior prediction capabilities due to their expertise, experience, access
to information, and other relevant factors. However, it is important to note
that even ”Star” Forecasters are not infallible.
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Identifying ’Star’ Forecasters is not a straightforward task. The approach
taken to identify them may vary depending on the goals of the identifica-
tion process. We aim to describe and explain how we identify the ’Star’
Forecasters in our case given our data properties and our objectives:

• First of all, we need to decide whether we evaluate ’Star’ Forecasters
across all prediction horizons simultaneously or separately for each
prediction horizon. If we choose to search for the best performers
across all horizons at once, we would assess their performance across
different time-frames. This approach may provide a holistic view on
Forecasters’ prediction capabilities. However, as we know, perfor-
mance is naturally better for the short-term forecasts. This would
give the Forecasters with more short-term forecasts an advantage. In
order to avoid this situation, we would have to come up with dif-
ferent weightings for different horizons, which we judge as unnec-
essary complexity for our task as it would make the process more
opaque and could produce sub-optimal results. Moreover, by treat-
ing each horizon independently, we would recognize that Forecast-
ers may have different strengths depending on the prediction hori-
zon. Finally, by applying this approach, we would ensure that there
are ’Star’ Forecasters for each horizon, thus ensuring the comparison
of the best performers with the consensus and machine learning pre-
dictions for all horizons. After considering all the advantages and
disadvantages, we decide to treat each horizon independently.

• It is crucial to verify that the superior performance of the ’Star’ Fore-
casters is consistent and is not merely attributed to chance. In order
to do so, we only retain the Forecasters who have a minimum of
10 observations for a given horizon. Filtering out Forecasters with
too few observations ensures that their performance is not simply
attributed to randomness. Bigger sample size enables us to evaluate
a Forecaster’s ’true’ prediction capabilities better, as the noise impact
should be diminished.

• As will be discussed later in this work (specifically in the Subsec-
tion High vs Low Inflation Regimes of the Section Results), inflation
paradigm has undergone a change in the post-Covid period with in-
flation rates soaring in the Euro Area and beyond. Particularly high
inflation values were recorded in 2022. This has posed significant
challenges to Forecasters. We propose that in order to be considered
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a ’Star’ Forecaster, the expert should have foreseen this paradigm
shift to some degree and should have predicted the 2022 inflation
more accurately than the majority of their counterparts. This con-
dition would show a deeper understanding of inflation drivers and
macroeconomic patterns. To ensure the condition is respected, we
only retain Forecasters who have had made predictions targeting
year 2022. If we do not do this, ’Star’ Forecaster would not include
Forecasters who have made predictions concerning 2022, as the er-
rors associated to inflation in that year were unprecedented. More-
over, this condition helps us retain the Forecaster who are currently
active and who have made predictions in the test period (year 2016
and after) that we are investigating.

• Finally, after having retained only the Forecasters that correspond
to the listed conditions (at least 10 observations, forecasts targeting
2022) for a each horizon separately, the next step is to determine
which among them should be designated as ’Star’. For this, an eval-
uation metric is necessary. Consistent with the methodology used in
this work, we use the mean squared error normalised by the mean
squared inflation. This metric takes into account both the magnitude
of the forecast error and the corresponding inflation values. Subse-
quently, Forecasters are sorted according to their normalised mean
squared error for each horizon. We decide to designate the top 10%
of Forecasters as the ’Star’ Forecasters as this percentage represents a
balance between representation (large enough number of Forecasters
being recognised as ’Star’) and superior capabilities (meaningfully
more accurate than average performance).

After the evaluation process, we have identified 34 ’Star’ Forecasters across
all horizons. Considering that there are 111 Forecasters in total and 74
Forecasters after applying the baseline selection criteria, this number of
’Star’s highlights that strengths and weaknesses of experts differ from one
prediction horizon to another. Some Forecasters may exhibit a better un-
derstanding of short-term forecasting, allowing them to capture shocks.
Conversely, other Forecasters may have a foresight to predict long-term
trends. Furthermore, this result highlights the need of tailoring forecast-
ing approach according to the prediction horizon.
Furthermore, Forecasters can be further divided into groups according to
their competence. While it is true that we have so far focused on the top
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performers, we can find the worst performers using the same methodol-
ogy. We do so by simply selecting the bottom 10% Forecasters for each
horizon from the pool of 74 Forecasters that meet the baseline criteria.
Applying this approach leaves us with 25 Forecasters that we will call
’Underperformers’. The fact that there are more ’Star’ Forecasters than
’Underperformers’ implies that incompetence in forecasting is relatively
consistent across horizons for the underperforming Forecasters. This in-
competence can be attributed to Forecaster-specific factors such as lack of
understanding of inflation dynamics and inability to take relevant infor-
mation into account. These issues would prevent a Forecaster from mak-
ing an accurate forecast for any time-frame.
Let us now visualise how predictions of the ’Star’ Forecasters and ’Under-
performers’ evolved over time and compare them to the realised inflation
on selected horizons:
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These graphs have several implications:

• For some horizons, predictions do not exist for either ’Star’ or ’Un-
derperformers’ group of Forecasts for some time periods. One expla-
nation could be that the Forecasters that newly joined the Survey (or
the ones that stopped responding to the Survey) exhibit prediction
capabilities either superior or inferior to all their predecessors.

• ’Star’ Forecasters and ’Underperformers’ essentially capture and pre-
dict similar inflation trends, however ’Star’ Forecasters are better at
understanding the subtleties such as magnitude of a trend.

• As the time-frame increases, the normalised difference between ’Star’s
and ’Underperformers’ decreases, and ’Star’ Forecasters do not ex-
hibit far superior capabilities of forecasting long-term trends. More-
over, we suggest that some cases of ’Star’ Forecasters being closer to
realised inflation rates may be partially attributable to chance. This
highlights the inherent uncertainty associated with inflation fore-
casts.
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4 Stickiness of Forecasters

Forecasters may not revise their expectations optimally as new infor-
mation comes in, ’sticking’ to their previous opinion. We would like to
explore how sticky the forecasts in the Survey are. We do so by estimat-
ing Forecasters’ information rigidity degree or the probability with which
they acquire no information in a period.

4.1 Set Up

Here we reference the sticky information model for forecasts used by
Coibion and Gorodnichenko (2015) and first introduced by Mankiw and Reis
(2002).
The model is written as follows:

Ftxt+h = (1 − λ)Etxt+h + λFt−1xt+h

where Ftxt+h is the consensus forecast across agents at time t of a macroe-
conomic variable x at time t+ h. Etxt+h is the current rational expectation x
at time t + h in the full information framework. λ can be interpreted as the
degree of stickiness of expectations, or information ridigity, or probability
with which agents acquire no information in a period. In this framework,

1
1−λ is the average time duration between information sets updates.
From this set-up, Coibion and Gorodnichenko (2015) derive a relation-
ship between the ex-post mean forecast error across agents and the ex-ante
mean forecast revision:

xt+h − Ftxt+h = c + β(Ftxt+h − Ft−1xt+h) + errort

where λ = β
1+β .

In particular, when λ = 0, forecasts represent rational full-information ex-
pectations, and the forecast error cannot be predicted using information at
date t.
In our case, the variable of interest x is inflation. Since we have the fore-
casts data over several decades, we can estimate the βs, and therefore the
λs across different horizons empirically. We now aim to do exactly this
using our data.
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4.2 Estimation of λ Across Horizons

Let us start with the 1 rolling year and 2 rolling years horizons.
Forecasts targeting inflation for the same period have a 1 year difference
between them (i.e. 2-years ahead forecast in Q3 2018 and a 1-year ahead
forecast in Q3 2019). We therefore can calculate the forecast revision after
1 year.
Define t as the date of the 1 rolling year forecast, t − 1 as the date 1 year
before (2 rolling years forecast date), and xt+1 as the targeted inflation at
a period t + 1, so in a year from the 1 rolling year forecast date. We then
estimate the regression in Python:

xt+1 − Ftxt+1 = c + β(Ftxt+1 − Ft−1xt+1) + errort

We estimate β̂ = 0.677 and so λ̂ = 0.67 with the p-value equal to 0.002.
This means that agents update their information every 8 months on aver-
age. λ̂ is quite high and statistically significant. Forecasters update their
information slowly and ’stick’ to their previous opinions.
Let us now move forward to the calendar year derived horizons. There
are significantly more horizons and forecasts revisions to explore, so we
will be able to investigate some patterns in agents’ stickiness.
Define h the horizon (in months) of the current forecast and ∆ time dif-
ference (in months) between the current forecast and the previous forecast
used to calculate forecast revision. This gives us the following regression:

xt+h − Ftxt+h = c + β(Ftxt+h − Ft−∆xt+h) + errort

We estimate this regression for different hs and ∆s. Let us present findings
in a table. We first report β̂, then λ̂, so that 0.14; 0.12 means β̂ = 0.14 and
λ̂ = 0.12. We report SI for statistically insignificant results (p-value above
0.05), NA for no data.
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∆|h h = 2 h = 5 h = 8 h = 11 h = 14 h = 17 h = 20

∆ = 3 SI 0.14; 0.12 0.72; 0.42 2.01; 0.67 5.36; 0.84 SI SI
∆ = 6 SI 0.14; 0.12 0.46; 0.32 1.49; 0.6 4.21; 0.81 SI SI
∆ = 9 SI 0.17; 0.14 0.4; 0.29 1.65; 0.62 2.4; 0.71 SI SI

∆ = 12 SI 0.14; 0.13 0.4; 0.29 1.53; 0.6 SI SI SI
∆ = 15 SI 0.14; 0.13 0.39; 0.28 1.44; 0.59 SI SI SI

∆ = 18 SI 0.14; 0.12 0.38; 0.27 1.37; 0.58 SI SI NA

Results start becoming statistically insignificant at a point of 14 months
until the target period. For 14 months horizon, there are only 3 statisti-
cally significant results, for bigger horizons, there are none. This is due to
both diminishing amount of data and properties of these forecasts.
The Forecasters always under-react to available information across all hori-
zons, as estimated λ always has a positive sign.
The most interesting results relate to the forecasts with 5-11 months hori-
zons. Other horizons have many / all statistically insignificant data points.
For the 2 months horizon, as the target date is very close, it is likely that
Forecasters are attentive and tend to use all available information. As on
to why forecasts with longer horizons are not statistically significant, we
propose that it is due to a big amount of noise and small sample sizes. We
also notice that λ̂ tends to converge as ∆ increases.
Forecasts are rather sticky and get less sticky as horizon decreases. There-
fore, Forecasters react better to information when the target date is close.
As expected, forecasts are also the most sticky with relation to the closest
previous forecast, so stickiness increases as ∆ decreases. The Forecasters
stick to their most recent forecast the most.

We will plot some graphs, fixing the horizon h of the reference forecast
Ftxt+h and varying the time difference ∆ between it and the previous fore-
cast used to compute the forecast revision Ft−∆txt+h. Here we focus on
the forecasts with 5 - 11 months horizon. Some statistically insignificant
results may figure in the graphs too.
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For a given horizon h, λ̂ converges as ∆ increases.

4.3 Dependence of λ̂ on h

We plot graphs that of dependence of λ̂ on h for a given ∆.
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The relationship between h and λ̂ is non-linear. This relationship has a
similar pattern for different ∆s. The overall tendency is that the Forecast-
ers update information less for further horizons.

4.4 Comparision with the U.S. results

Coibion and Gorodnichenko (2015) also estimate λ using similar survey
data in the U.S. The horizon in their data is current quarter + next three
quarters (similar to our 11 months horizon). Their ∆ is equal 1 quarter.
They find λ̂ = 0.55 which is approximately the number our 11 months
horizon λ̂ converges as ∆ increases. However, when we take ∆ = 1 quar-
ter and h = 11, our λ̂ = 0.67, so this would be mean that the US experts
update their information more frequently than their counterparts in Eu-
rope.
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4.5 Business Cycle and Stickiness

Coibion and Gorodnichenko (2015) have also found that calm times are
associated with stronger information rigidities. We proceed to check this
finding in the European data. We would like to test if business cycle has
any effect on the stickiness of forecasts. We do this by including a dummy
variable δrecession into the regression (equal to 0 in an expansion, and to 1
in a recession). The Euro Area business cycle data is taken from the FRED.

We set up the regression as follows:

xt+1 − Ftxt+1 = c1 + β1(Ftxt+1 − Ft−1xt+1)+ δrecessionc2 + β2(Ftxt+1 − Ft−1xt+1)recession)+ errort

i.e. we allow β and c to vary according to the recession indicator. We treat
(Ftxt+1 − Ft−1xt+1)recession) as an independent variable that is equal to 0
in an expansion and to Ftxt+1 − Ft−1xt+1 in a recession, so β2 allows to
capture additional stickiness in a recession. δrecession allows us to add an
intercept c2 responsible for a recession.
We do not run regression on h and ∆ pairs that were already statistically
insignificant in the previous set-up.
We get from the results that c2 is always statistically insignificant, so the
intercept for recession and expansion should be statistically the same.
As for β2, it is statistically significant for some h and ∆. We report results in
the table below. NA stands for either no data or statistically insignificant
in the previous general set-up. SI means β2 is statistically insignificant, i.e.
recession has no additional effect on stickiness for the given parameters.

We report values in the following order: β̂1; λ̂1; β̂2; λ̂2 (λ̂2 = β̂1+β̂2
1+β̂1+β̂2

)

∆|h h = 5 h = 8 h = 11 h = 14

∆ = 3 0.85; 0.45;−1.4;−1.19 0.78; 0.44;−0.38; 0.28 2.83; 0.74;−2.31; 0.35 SI
∆ = 6 0.27; 0.21;−0.41;−0.18 0.52; 0.34;−0.3; 0.18 2.08; 0.67;−1.77; 0.23 SI
∆ = 9 0.19; 0.16;−0.27;−0.08 0.45; 0.31;−0.27; 0.15 SI SI

∆ = 12 0.17; 0.14;−0.29;−0.14 SI SI SI
∆ = 15 0.17; 0.14;−0.29;−0.14 SI SI NA

∆ = 18 0.17; 0.14;−0.28;−0.13 SI SI NA

The estimated λ is always smaller in recessions than in expansions and
even becomes negative when h = 5, which means that, on average, Fore-
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casters overreact to the available information.
Overall, forecasts in recession are less stickier than in expansions. This
is consistent with what Coibion and Gorodnichenko (2015) conclude in their
Section Information Rigidities over the Business Cycle. In recessions, agents
react to information quicker and more importantly than otherwise.
There are less statistically significant results for recessions than in general,
and that number of statistically significant results decreases as h increases.
This may mean that agents update their information better in recessions
only for the short-term horizons that are more worrying.
The trend of λ̂ increasing with horizon h is still present. Agents incorpo-
rate less information into their forecasts for longer-term horizons in reces-
sions as well as in expansions.
We now plot some graphs, fixing the horizon h of the forecast Ftxt+h and
varying the time difference ∆ used to compute the forecast revision. Here
we focus on the forecasts with 5 - 11 months horizon. Some statistically
insignificant results may figure in the graphs too for illustration purposes.
We plot for recession λ̂2, expansion λ̂1, and the overall λ̂.
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The convergence of estimated information degree is observed both for re-
cessions and expansions. Forecasts made in recessions consistently exhibit
less stickiness than those made in expansions. In recessions, Forecasters
increase their attention levels and grasp the available information. They
may even overreact to the information on the short-term horizons which
are the most alarming.

4.6 Forecaster-specific λ

We would like to investigate whether individual Forecasters exhibit
different level of stickiness. For this, we estimate the following regressions
for each of the Forecasters:

xt+h − Fi,txt+h = ci + βi(Fi,txt+h − Fi,t−1xt+h) + errorti

The estimation is made for the Forecasters for whom there are more than
2 observation available for a given h and ∆ pair.
Some β̂ are strongly statistically significant, while some are not at all.
Therefore, some Forecasters are consistently showing the same level of
stickiness while others either fully update their information sets or update
them with varying frequency. In this case, the best way to illustrate the
results is graphically.
We first investigate the issue of statistical significance. We estimate the
percentage of Forecasters whose β̂ is statistically significant at the 5% level,
i.e. percentage of Forecasters who exhibit a consistent level of stickiness.
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Statistical significance tends to be decreasing with ∆, but the effect is not
strong. Moreover, the horizon effect on statistical significance is not strong
either. 40% to 60% of Forecasters show statistically significant stickiness
depending on the parameters.
we proceed to focusing on the Forecasters whose stickiness level is consis-
tently statistically significant. We find the Forecasters whose β̂s are statis-
tically significant for all ∆s for a given h. As a result, depending on the
horizon, there are between 10 and 18 such Forecasters. We will plot their
λ̂ as a function of ∆ for a given h.
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For these Forecasters, λ̂s converge very quickly. Moreover, their levels of
stickiness are very correlated. Some Forecasters exhibit constant stickiness
and consistently fail to incorporate new information to the same degree.

5 Machine Learning Models

5.1 Overview

We need to implement machine learning models to compare the Fore-
casters’ performance with machine performance. Our models of choice
are random forest regression and ridge regression.
Models are trained on the historical data corresponding to forecasts made
from the beginning of 1999 until the end of 2015. Models are tested on
the data corresponding to forecasts made from the beginning of 2016 to
the end of 2022. The prediction models are implemented for some of the
prediction horizons described in the Section Forecasts Data Description: 1
rolling year, 2 rolling years, 3-29 months. Only horizons for which there
is enough data are used. To get a forecast, we give the models the latest
information available at the forecast time. By construction, when testing
the model, we get out-of-sample results.
For the rolling-year(s) horizons (i.e. 1 year ahead, 2 years ahead), the train
data is taken at the monthly frequency to achieve a better accuracy of the
model, and the test data is taken at the quarterly frequency as it corre-
sponds to the forecasts’ frequency. For the calendar year derived horizons
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(i.e. 2 months ahead, 5 months ahead, 8 months ahead, etc) train and test
data are taken at the yearly frequency as it is the only possibility.

5.2 Predictors

We need a set of predictors to be able to develop the two machine learn-
ing models. As inflation is a macroeconomic variable, we will use other
macroeconomic variables to predict it. Predictor variables should either
drive inflation or or be closely related to inflation and co-occur with it.
We aim to explain our predictors’ choice and describe the predictor vari-
ables:

1. GDP growth is known to be closely connected to inflation. Growth
in GDP leads to inflation increase as economic actors have more re-
sources to spend, which leads to inflationary pressures. Conversely,
when GDP growth is depressed, consumers tend to save more, which
results in reduced demand and deflationary pressures. The Euro
Area GDP growth rate same period, previous year data is taken from
the FRED website as it provides the GDP data on a monthly basis,
while the ECB only provides GDP growth data only on a quarterly
basis.

2. Relationship between inflation and government debt may be com-
plex. Some governments may attempt to increase inflation to dilute
the government debt and its servicing costs. Moreover, a higher level
of debt can lead to an increase in public spending, which may lead
to inflationary pressures. On the other hand, a higher level of public
debt may be associated to events such as recessions which depress
the inflation in the long-run. Therefore, other variables may be nec-
essary for a model to capture the relationship of debt with inflation.
Our solution to this issue is using polynomial feature scaling in the
ridge regression, allowing for non-linear relationships and for inter-
actions between variables. The Euro area government debt as per-
cent of GDP data is taken from the ECB website.

3. As defined by the ECB, M1 monetary aggregate is the ”sum of cur-
rency in circulation and overnight deposits in the economy”. When
M1 increases, there is more money for economic agents to spend,
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which may lead to a rise in inflation. Conversely, decrease in M1
may lead to saving behaviours, decreased demand, and lower prices.
M1 has a direct influence on consumer spending. The Euro area M1
monetary aggregate is measured as an index and the data is taken
from the ECB website.

4. M3 is the broadest monetary aggregate. As defined by the ECB, It
contains ”financial instruments that closely resemble deposits, such
as repurchase agreements, shares issued by money market funds and
short-term debt securities issued by banks” and M2 which itself con-
sists of M1 and ”deposits with an agreed maturity of up to two years,
or those redeemable at notice with a notice period of up to three
month”. It is related to inflation in a similar, even though less di-
rect way than M1. Its impact on inflation may be more long-term
through indirect channels such as investment. The Euro area M3
monetary aggregate is measured as an index and the data is taken
from the ECB website.

5. Increases in production prices may be passed on to consumers, gen-
erating inflation. It is important to monitor producer prices to an-
ticipate inflation. The effect of producer prices on inflation should
be more pronounced in the short-term as it may be considered as a
supply-side shock. We use the Euro area producer price index (PPI),
domestic sales, year-on-year percent change data from the ECB web-
site to represent this effect.

Some predictors, in particular, the PPI, are more important in the short-
to-medium-term forecasting than in the long-term as they may represent
shocks. Hence, we only use the PPI for predicting inflation on horizons
smaller than 2 years.
Moreover, as will be discussed later, the sample size for the calendar year
derived horizons (i.e. 2-29 months horizons) is small as it only contains
yearly data-points, thus for these horizons model training is more chal-
lenging. To decrease the risk of overfit, for the 2-29 months horizons, M1
and M3 should not be used as predictors at the same time as these fea-
tures account for similar trends. M1 is used for shorter-term horizons, M3
is used for longer-term horizons. For the 1 and 2 rolling years horizons,
both M1 and M3 are used.
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5.3 Random Forest Regression

Just as van Binsbergen, Han, and Lopez-Lira (2022) use the random forest
regression to predict their variable of interest (corporate earnings), we use
the random forest regression to predict inflation. Random forest regres-
sion is a non-linear supervised ensemble method. It consists of multiple
decision tree regressors, which allows for improved accuracy and stability
of predictions comparing to individual decision trees.
A decision tree regressor has a hierarchical structure. It recursively par-
titions the input data into subsets based on features. Each decision node
in the tree represents a decision based on a feature, while each leaf node
represents a predicted value of the target variable. The average value of
variables on a leaf node represents the resulting prediction. The threshold
used to partition the data is chosen so that it minimises the the expected
mean squared error of the resulting prediction over all subsequent nodes.
A new data point follows the path from the root node to a leaf node, mak-
ing decisions based on its feature values. The leaf node reached provides
the prediction equal to the average outcome for that leaf. In decision trees,
the depth represents the maximum number of splits in the tree. Depth is
the length of the longest path from the root node to a leaf node. A greater
depth allows the tree to capture more complex relationships in the data,
but it also increases the risk of overfit. The maximum number of features
parameter helps to control the tree complexity by limiting the number of
features considered at each decision node. By setting a maximum num-
ber of features, the decision tree algorithm selects the best feature subset
among the available options at each node, and so reduces noise by select-
ings the most imporant features. Popular values for the maximum number
of features parameter are ’sqrt’ (square root of the total number of features)
and ’log2’ (base-2 logarithm of the total number of features). As decision
trees may exhibit high variance and overfitting due to the risk of fitting too
specific patterns or noise in the data, ensemble methods such as random
forest are preferred to get more stable and accurate results.
Random forest regressors are an ensemble of decision tree regressors. For
learning of each decision tree, a sub-sample is randomly drawn from the
sample with replacement, thus noise impact is reduced and generalisation
is improved. Moreover, for each decision tree, a random subset of features
is selected. This helps limit correlation among the trees and prevents any
single feature from dominating the predictions. The final outcome of a
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random forest is the average outcome of decision trees it consists of. The
number of decision trees in a random forest can be configured. Higher the
number of decision trees, higher the performance is expected to be as the
impact of biased or noisy trees is reduced. However, when the number of
decision trees is high enough, a plateau in performance is expected and ac-
curacy improvements from adding more decision trees are only marginal.
Below is an example of the evolution of the normalised mean squared er-
ror on train data as a function of number of estimators keeping all other
parameters constant:

A plateau is reached after about n = 1000 estimators. We choose this num-
ber as optimal for our task from the performance and computational point
of views.
When it comes to the choosing the hyper-parameters such as maximum
number of features or their maximal depth, the optimal parameters de-
pend on data and its complexity. In our case, we find the optimal hyper-
parameters using cross-validation which is a re-sampling technique for
hyper-parameter tuning. It involves dividing the data into subsets and
iteratively evaluating the model’s performance on different combinations
of these subsets. Cross-validation provides an unbiased estimate of the
model’s generalization ability for various hyper-parameters. The hyper-
parameter values associated with the best performance are chosen. The
hyper-parameter tuning is performed on the train data.
As a result of hyper-parameter tuning, we get that the ’sqrt’ maximum
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number of features is optimal. We also look for the optimal tree depth. We
include an example of evolution of the normalised mean squared error on
train data number of estimators equal to 1000 and maximum number of
features equal to ’sqrt’, the horizon of prediction is 1 rolling year:

We noticed that the train MSE first decreases exponentially with maximum
depth, then reaches a plateau after maximum depth equal to 6. From the
graph, we suspect that the model we use is prone to overfitting. More-
over, as will be discussed later, there has been a change in inflationary
regime post-Covid, so we prefer a model that did not fully fit to the previ-
ous inflation regime. Therefore, even though the optimal maximum depth
suggested by the cross-validation is equal to 7-10 depending on the hori-
zon used, we will use the maximum depth equal to 6 for all horizons to
have a less complex model.
Mean squared error normalised by squared inflation on the train data (0.6)
is significantly higher the normalised MSE on the train data (0.01). This in-
deed confirms that the model is prone to overfitting.
Finally, we would like to report the feature importance in the model. Fea-
ture importance is a metric of the relative significance of each feature. The
importance is computed by measuring the decrease in model performance
when a particular feature is randomly shuffled, causing its original rela-
tionship with the target variable to be disrupted. The greater the decrease
in performance, the more important the feature is considered.
The feature importance for the 1 rolling year prediction using the chosen
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parameters is reported below:

Feature importance is balanced and none of the features is dominating
others, which should help to avoid overfitting. However, the model still
exhibits an overfit which is evident from comparing the train and the test
errors. The next method we use aims at tackling this issue.

5.4 Ridge Regression

The second method we use for predicting inflation is the ridge regres-
sion with the polynomial scaling of features for some horizons.
Ridge regression is a regularised regression method used when there is
multicollinearity among predictors. It extends ordinary least squares re-
gression by introducing a regularization term to the objective function.
The method adds a penalty (regularisation) term, controlled by the hyper-
parameter λ, to the OLS objective function. Increasing λ shrinks the re-
gression coefficients towards zero and so reduces their magnitude. Thus,
the ridge regression model reduces the influence of highly correlated pre-
dictors and keeps coefficient values balanced without any feature domi-
nating others.
Mathematically, ridge regression minimizes objective function which is
the sum of squared errors (OLS) plus the L2 penalty term proportional to
the square of the coefficients (regularisation). This penalty term balances
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the fit and the complexity of the model. The ridge regression objective
function is written as:

(y − Xβ)T(y − Xβ) + λβTβ

where y is the vector of target variables, X is the matrix of features, and β
is the vector of coefficients.
As we have observed in the Subsection Random Forest Regression, the
random forest model exhibited an overfit. This can be partially explained
by the fact that our predictors, macroeconomic variables are correlated,
which can be confirmed by this correlation heatmap:

As our features are correlated, the ridge regression is a more suitable choice
in our case, as it prevents overfit and is able to handle multicollinearity.
We use the polynomial feature scaling for some horizons. This choice is
based on our understanding that the relationship between predictors and
inflation is likely non-linear and is dependent on interaction between pre-
dictors. Polynomial feature transform the original predictors into higher-
order polynomial terms. By incorporating polynomial terms, we allow for
more complex interactions among predictors and inflation, enhancing the
model’s ability to capture the subtleties of inflation dynamics. We use the
maximum polynomial degree of 2, as it represents the optimal trade-off
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between model fit and complexity. With a degree higher than 2, the model
will become too specific to the train data and it may fit noise in the data.
The degree of 2 allows us to capture curvature and interactions in the data,
making it the optimal choice.
We only use the polynomial features scaling on 2 horizons: 1 rolling year
and 2 rolling years ahead predictions due to sample size issues. For these
2 horizons, train data is available monthly over a long period of time span-
ning predictions made from 1999 to 2015. Even though there are 20 fea-
tures after polynomial scaling, for these 2 horizons the degree of freedom
remains high, allowing for the optimal fit and capturing of patterns, not
the noise. However, in case of the calendar year derived horizons (2-29
months), as the data can only be taken yearly, the sample size is from 15
to 17 data points, making the degree of freedom negative or close to 0. In
general, a small degree of freedom is detrimental for regression quality
for several reasons. It increases the risk of overfit. With a small amount of
data, adding more coefficients can lead to a more complex model that is
prone to fitting noise. Estimating a larger number of coefficients requires
a larger sample size to achieve reliable and statistically significant results.
With few data points, the estimates may have high variability. We thus de-
cide against using polynomial scaling for calendar year derived horizons
as it represents unnecessary complexity and the risk of overfit in the case
of limited data.
The hyper-parameter λ allows for control over the trade-off between model
fit and complexity. We present the mean squared error normalised by the
squared inflation on the train data evolvution with lambda for the 1 rolling
year horizon:
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As expected, the train MSE is going up with λ. As before, the optimal λ
can be chosen using cross-validation which tackles the overfit risk on the
train data. The optimal λ varies from one horizon to another. It is ex-
pected to be higher in case of more complex features (polynomial) to deal
with complexity and multicollinearity in the data.
It is important to consider statistical significance of the variables. For the 1
rolling year horizon, 65% of the features are statisically insignificant at the
5% level. We report the p-values of all the scaled features for the 1 rolling
year horizon:
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To improve model interpretability, model fit, and decrease the risk of over-
fit, we remove statistically insignificant variables one by one in descending
order of p-value until all of the remaining features are statistically signifi-
cant at the 5% level. As a result, we are left with 11 features from 20 initial
features for the 1 rolling year horizon. This process is only executed for
the 1 and 2 rolling year horizons, as these 2 horizons are the only ones
with sample size big enough to ensure robust statistical significance esti-
mates. For the 2-29 months prediction horizons, the variability is too high
and we instead rely on economic intuition we have described in the Sub-
section Predictors to select features.

A clear advantage of the ridge regression is its interpretability. Each fea-
ture has a corresponding coefficient, which serves as a quantitative mea-
sure of the feature’s influence on the final prediction. This analysis of the
coefficients allows for a understanding of the relative impact of each fea-
ture. It can provide insights on drivers of inflation. We present the coeffi-
cients associated with the features used for the 1 rolling year horizon after
the selection process:

M1 and Change in Producer index are the only two first-order individ-
ual features left. As we have hypothesized before, inflation is driven by
complex non-linear factors and interactions. We note that the features left
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out would be different for the 2 rolling year horizon depending on the
p-values of the coefficients. Indeed, some drivers of inflation are more im-
portant in the short-term, and some are more important in the long-term.

This model still exhibits an overfit with test R2 = 0.69 and the train R2 =
0.84. Increasing the λ would decrease the overfit and bring the R2 val-
ues closer to each other. We avoid doing so as this would break the rules
of testing a model out-of-sample. Nevertheless, the ridge regression pro-
vides us with a reasonable fit and, as will be discussed in the Section Re-
sults, the ridge regression performs significantly better than the random
forest regression.

6 Results

6.1 General Case

Firstly, we present some plots depicting Forecasters’ consensus predic-
tions, random forest predictions, ridge predictions, and realised inflation
over time for selected horizons to illustrate our models’ performance.
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Ridge regression generally produces better results than random forest re-
gression. As expected, predictions’ and forecasts’ quality decreases with
horizon. Moreover, from these graphs, it is not always clear whether hu-
mans or machines perform better, and more information is needed. How-
ever, it is obvious from the graphs, that during the post-Covid period, ma-
chines produced strikingly better predictions than humans did. Machines
better captured the new trend of soaring inflation rates. It may be con-
nected to the fact that humans do not update their information enough as
discussed in the Section Stickiness of Forecasters or to their bias which will
be explored later. In order to better understand the properties of machine
and human forecasts, a study of the realised errors across all horizons is
needed.
We now report the mean squared error normalised by the squared in-
flation for various horizons for Forecasters, ridge predictions, and ran-
dom forest predictions over the test period (predictions made from 2016
to 2022). We also report these values for the ’Star’ and ’Underperformers’
(’Under’) categories of Forecasters to compare the machine with the best
and the worst performers among experts.

Horizon Forecasters ’Star’ ’Under’ Random Forest Ridge

1 rolling year 0.63 0.53 0.69 0.6 0.18
2 rolling years 0.69 0.59 0.7 0.69 0.24

2 months 0.003 0.001 0.007 0.43 0.04
5 months 0.03 0.005 0.12 0.4 0.01
8 months 0.1 0.03 0.27 0.39 0.02

11 months 0.4 0.32 0.5 0.45 0.13

14 months 0.55 0.48 0.58 0.51 0.3

17 months 0.62 0.58 0.66 0.48 0.45

20 months 0.65 0.6 0.67 0.51 0.44

23 months 0.65 0.61 0.7 0.64 0.61

26 months 0.68 0.63 0.72 0.65 0.53

29 months 0.67 0.59 0.68 0.7 0.79

Forecasters generally perform worse than the Ridge regression. For the

39



short-term and medium-term horizons, Forecasters also lose precision at
a faster rate than the machine. It is consistent with our hypothesis that
Forecasters update their information sets less for forecasts with further
horizons and that their stickiness grows with horizon.

However, the table reveals that the Forecasters perform significantly
better than both machine learning models on the 2-month horizon. This
discrepancy can be attributed to the nature of the forecast for this par-
ticular horizon. The forecast is constructed as a calendar year forecast,
typically made Quarter 4 of each year. Human forecasters have access to
approximately 10 out of 12 months’ worth of data that will contribute to
the inflation rate for that year. However, effectively communicating such
data to a machine learning model poses difficulties. Thus, given the atten-
tiveness of human forecasters for the 2 months horizon, that we observed
in the Section Stickiness of Forecasters, it is expected that Forecasters out-
perform the machine learning models on the 2 months prediction horizon.

When analyzing the performance of the ridge model for different pre-
diction horizons, it is observed that the model shows a significantly worse
performance for the 17-29 months horizons comparing to the 2 rolling
years horizon, even though the time-frames for these horizons are similar.
Moreover, performance of the ridge model tends to converge closer to the
performance of the random forest model on these horizons. We connect it
to the fact that the data for the calendar year derived horizons is limited,
and as the horizon increases, too much noise goes into the model, which
fails to make fully relevant predictions. Therefore, the fact that human
Forecasters outperform both models on the longest (29 months) horizon
is also expected, as the data for the models to learn was limited and not
enough for the models to distinguish noise from patterns on such a long
horizon.

As we have expected, the ridge model beats the random forest on all
but one horizon (29 months) by a significant margin. This is likely due
to the ridge model being more adjustable and less prone to overfitting.
In our test period, there has been a shift in inflation paradigm which we
will discuss in the next Subsection. From the table, it is clear that the ridge
model is more suitable for our task, and so we will use it as the benchmark
machine model to compare with the Forecasters.
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We consider the result obtained for the ’Star’ and ’Underperformers’
groups of Forecasters very valuable as they provide insights about dif-
ferences between Forecasters. On the 5-8 months horizons and the 23-
26 months horizons, normalised MSEs of the ridge model and the ’Star’
Forecasters are of similar order. We hypothesize that the similar perfor-
mance for the 23-26 months horizons may be explained not so much by
the superior capabilities of the ’Star’ Forecasters on these horizons, but
rather by limitations of the ridge regression on these horizons that we
have just discussed. Indeed, when comparing the normalised MSEs of
the ’Star’ Forecasters and the ridge model for the 2 rolling year horizon
(similar time-frame to the 23-26 months horizons), the ridge model sig-
nificantly outperforms the top experts among Forecasters. However, for
the 5-8 months prediction horizons, such inference cannot be made. Thus,
indeed, the ’Star’ Forecasters’ performance is on par with the ridge re-
gression performance for the short-term horizons. Therefore, the ’Star’
Forecasters make close to rational predictions on the short-term horizons.
However, their performance still decreases on longer-term horizons, in
line with our hypothesis that Forecasters exhibit more stickiness for fur-
ther horizons. Therefore, even the best Forecasters exhibit stickiness even
if to a smaller degree than the general pool of experts and do not update
their information sets often enough. As for the ’Underperformers’, quality
of their forecasts decreases at a more rapid rate a horizon grows. We thus
hypothesize that the ’Underperformers’ do not update their information
and exhibit a significant degree of stickiness for all, but the smallest hori-
zon (2 months)

The results obtained for the 1 and 2 rolling years prediction horizons,
for which the training data was the most extensive represent an essential
aspect to emphasize. The ridge model has had the opportunity to learn
from a more comprehensive dataset than for the calendar year derived
horizons, resulting in a higher quality of predictions. Therefore, the per-
formance of the model in these horizons may reflect the true potential of
machine learning in forecasting macroeconomic variables.
Ridge regression produces significantly more accurate predictions than
the Forecasters on these two horizons. As discussed earlier, one contribut-
ing factor in this accuracy difference is that the Forecasters update their in-
formation sets less frequently on longer-term horizons. We also attribute
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the ridge’s success to it being the right model for this set-up when enough
data is available due to it being able to balance between complexity and
model fit.
Given the superior performance of the ridge regression model on the 1
and 2 year horizons, we will assume that its predictions are rational ex-
pectations of inflation at the time the forecasts are made. This assumption
provides a basis for exploring any biases present in the human forecasters’
predictions relative to this rational forecast. We will examine the differ-
ences between the human forecasts and the ridge regression predictions
to find the potential biases of human forecasters.

The graph above represents the Ftxt+1 − Etxt+1, the difference between
the Forecasters’ average forecast and the ridge prediction for the 1 rolling
year prediction horizon. This bias is calculated over the test period, in-
cluding forecasts made between 2016 and 2021, with inflation realized in
2017-2022.
From this graph, the Forecasters have exhibited overly optimistic fore-
casts, predicting lower inflation than the rational benchmark provides dur-
ing the post-Covid period. However, it may in fact be connected not to the
inherent optimism of forecasters, but to the post-Covid shift of paradigm
in inflation, which they failed to adapt to. Indeed, before 2021 the bias was
more balanced.
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The graph above represents the Ftxt+2 − Etxt+2, the difference between
the Forecasters’ average forecast and the ridge prediction for the 2 rolling
years prediction horizon, calculated over the test period. This graph is
similar to the 1 rolling year prediction bias graph, leading us to the same
questions as those outlined above.

To conclude this Subsection, we present the mean error and the mean
squared error of the Forecasters relative to the rational (ridge) predictions,
both normalised (by the inflation and the squared inflation, respectively),
for the 1 and 2 rolling years prediction horizons and over the test period.

Horizon Normalised Mean Error Normalised Mean Squared Error

1 rolling year −0.28 0.2
2 rolling years −0.17 0.16

In the next subsection we will explore whether the bias seen is caused
by optimism, stickiness, or a combination of both.
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6.2 High vs Low Inflation Regimes

There has been a significant shift in paradigm post-Covid, with infla-
tion rising unprecedentedly. This sudden change in the inflation dynamics
may have posed a challenge to both humans forecasts and machines pre-
dictions. Our test data includes the post-Covid period which we aim to
analyse and compare with the pre-Covid period.

Ridge regression generally performs significantly better than the random
forest regression. This can be attributed to the properties of the ridge re-
gression and to the shift in inflation paradigm. Ridge regression, in con-
trast to the random forest regression, is more adaptable, and less prone to
overfit. It can handle scenarios with extreme values as it remembers the
magnitude of influence of each feature and will apply them to each value
seen, even if extreme, thus generalising the influence of features. More-
over, by applying regularization, ridge regression prevents the model from
relying too heavily on specific data points, leading to a more balanced rep-
resentation of the underlying patterns. On the other hand, random forest
lacks this extrapolation capability. This limitation arises because the in-
dividual decision trees in the random forest make predictions based on
the average of the training samples on a leaf node. If there are no un-
usual values in train data, the model may not be able to accurately predict
them, even if the pattern remains the same, just with more extreme values.
Therefore, the better performance of ridge relative to the random forest
may be partially explained by the shift in inflation paradigm it has better
adapted to.

Moreover, as we have discussed that the Forecasters tend to be inatten-
tive, we hypothesise that they may have failed to adapt to the changing
paradigm. A large part of the ridge model’s advantage over the Fore-
casters may be attributed to inattentiveness of the Forecasters. If this is
the case, then we should see more balanced difference in performance be-
tween the machine and the Forecasters in the pre-Covid period. If it is not
the case, then the difference in performance should remain as pronounced
in the pre-Covid period and it may be attributed not only to information
rigidity, but also to the Forecasters’ inherent bias such as excessive opti-
mism or excessive pessimism.
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We define the post-Covid period to have started in September 2021, as
it was when the inflation rate exceeded 3%. The corresponding 1 rolling
year horizon forecasts started in September 2020, and the 2 rolling years
horizon forecasts in September 2019, etc. We first report the normalised
mean squared error in the low inflation regime for all the Forecasters, the
’Star’ Forecasters, the ’Underperformers’ (’Under’) Forecasters, the ran-
dom forest regression, and the ridge regression for the same horizons as
before:

Horizon Forecasters ’Star’ ’Under’ Random Forest Ridge

1 rolling year 0.34 0.33 0.58 0.49 0.28
2 rolling years 0.58 0.18 0.69 1.04 0.54

2 months 0.004 0.001 0.01 0.19 0.1
5 months 0.02 0.003 0.02 0.06 0.04
8 months 0.05 0.06 0.05 0.08 0.09

11 months 0.27 0.24 0.31 0.47 0.36

14 months 0.23 0.22 0.18 0.33 0.31

17 months 0.25 0.21 0.28 0.5 0.39

20 months 0.3 0.35 0.31 0.61 0.47

23 months 0.33 0.35 0.36 0.55 0.42

26 months 0.58 0.84 0.66 0.78 0.55

29 months 0.57 0.96 0.69 1.02 0.8

The results present a different picture than that presented by overall MSEs.
During the pre-Covid period, ridge regression outperformed the Forecast-
ers on the 1 rolling year and the 2 rolling years horizons. However, the
results for the 1 rolling year horizon are more impressive, as the ridge
model outperformed ’Star’ Forecasters, which is not the case for the 2
rolling years horizon. This may be connected to luck of ’Star’ Forecast-
ers in this particular case, to their superior forecasting capabilities in the
’usual’ inflation framework, or to the under-performance of the ridge re-
gression in this case. A very surprising result is that the pre-Covid per-
formance of the ’Star’ Forecasters is significantly better for the 2 rolling
years horizons than for the 1 rolling year horizon. Indeed, then, the su-
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perior performance of the ’Star’ Forecasters may be partially attributed to
luck in this particular case. In general, the performance of the Forecasters
has been much closer, and in many cases superior, to the performance of
the ridge regression in the regular inflation paradigm. This plays into our
hypothesis that the overall out-performance of the ridge model relative
to the Forecasters is mostly though not fully, explained by the inattentive-
ness or stickiness of the experts who were unable to foresee the post-Covid
change in framework. An important aspect to take into account is that the
pre-Covid under-performance of ridge relative to the Forecasters for cal-
endar year derived horizons may be explained by the limited train data
size. With so few data, the ridge model may have been able to learn gen-
eral inflation patterns, and not the subtleties differentiating 1.5% and 2.0%
inflation rates, for example.

We now report the normalised MSEs in the high inflation regime for
all the Forecasters, the ’Star’ Forecasters, the ’Underperformers’ (’Under’)
Forecasters, the random forest regression, and the ridge regression for the
analysed horizons:

Horizon Forecasters ’Star’ ’Under’ Random Forest Ridge

1 rolling year 0.67 0.56 0.7 0.62 0.16
2 rolling years 0.7 0.63 0.7 0.66 0.22

2 months 0.002 0.001 0.007 0.45 0.03
5 months 0.03 0.005 0.13 0.42 0.007
8 months 0.1 0.03 0.28 0.42 0.01

11 months 0.41 0.32 0.52 0.44 0.11

14 months 0.58 0.5 0.62 0.52 0.3

17 months 0.65 0.61 0.69 0.47 0.46

20 months 0.68 0.61 0.69 0.51 0.44

23 months 0.68 0.63 0.73 0.65 0.62

26 months 0.69 0.62 0.72 0.65 0.53

29 months 0.68 0.57 0.68 0.68 0.79

Ridge regression outperforms Forecasters (’Star’ Forecasters included) on
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the majority of horizons in the post-Covid period. This is especially ev-
ident on shorter-term horizons, where higher inflation rates were more
foreseeable. The increase in inflation rates was significantly better cap-
tured by the ridge model, while the Forecasters have likely not updated
their information sets and exhibited stickiness to the previous inflation
framework. It should be noted that the ’Star’ Forecasters have better adapted
to the shift in inflation paradigm, especially on shorter-term horizons. In-
deed, best experts should foresee a change in paradigm and not ’stick’ to
the previous framework. However, on the longer-term horizons, the ’Star’
Forecasters did not capture the shift.

As for the random forest model, as expected, it generally performs bet-
ter pre-Covid, in the usual inflation framework. This explained by inher-
ent random forest properties. It is better to use random forest in cases
where test data falls in the same range as train data.

Let us close this section by comparing the Forecasters’ biases in the pre-
Covid and post-Covid periods. Again, for the 1 and 2 year horizons,
we will assume that ridge regression’s predictions are rational expecta-
tions of inflation at the time the forecasts are made. We present the mean
error and the mean squared error of Forecasters relative to the rational
(ridge) predictions, both normalised (by inflation and squared inflation,
respectively), for the 1 and 2 rolling years prediction horizons over the
pre-Covid, low inflation period.

Horizon Normalised Mean Error Normalised Mean Squared Error

1 rolling year −0.02 0.06
2 rolling years 0.28 0.13

We present the same table for the post-Covid, high inflation period.

Horizon Normalised Mean Error Normalised Mean Squared Error

1 rolling year −0.44 0.21
2 rolling years −0.32 0.16
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As expected, in the post-Covid predictions, Forecasters were further away
from the machine predictions than pre-Covid and exhibited a negative
bias in relation to the ridge prediction. This may be entirely explained by
the Forecasters not expecting the post-Covid shift in the inflation paradigm
and sticking to their previous predictions. Thus, the bias exhibited post-
Covid is not so pessimistic or optimistic, but rather explained by the infor-
mation rididity of the Forecasters.

However, in the pre-Covid world, the Forecasters were very close to the
ridge predictions for the 1 rolling year horizon. As seen in the Section Fore-
casts Data Description, the pre-Covid mean error (spanning the total sam-
ple period and not only the test period) of the Forecasters relative to the
realised inflation values is equal to −0.07, thus negative as well for the 1
rolling year horizon. The bias shown for this horizon may be explained by
a small degree of optimism or by mere randomness. Its magnitude is not
high enough for us to conclude that the Forecasters have shown a signifi-
cant negative bias on the 1 rolling year horizon in the pre-Covid period.
For the 2 rolling years horizon, the Forecasters exhibited a large positive
bias, thus predicting higher inflation values than the machine. Pre-Covid
test period contains low inflation values seen during Covid, which were
unpredictable 2 years before, as the pandemic had not emerged yet. Thus,
the positive bias may be partially explained by this downward shock. In
the Section Forecasts Data Description, the ME of the Forecasters relative
to the realised inflation values is positive as well. Based on this find-
ings, we conclude that the Forecasters have shown a positive bias on the 2
rolling years horizon in the pre-Covid period.

7 Conclusion

We have started this work with the question ’Can Machines Beat Pro-
fessional Economic Analysts in Forecasting Macroeconomic Indicator(s)?’.
In our case, the indicator has been inflation. We cannot give a 100% con-
clusive answer that would work for all the situations as a result of this
work, but we have gotten closer to giving it.

We have used the ECB Survey of Professional Forecasters data to repre-
sent the predictions of the professional economic analysts. We have hy-
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pothesized that the Forecasters are not a homogeneous group and found
the ’Star’ and ’Underperformers’ groups of Forecasters. We have run a
stickiness analysis on Forecasters checking if they regularly update their
information to make predictions. We have found that the Forecasters tend
to exhibit stickiness, and more so in expansions than in recessions, when
they may even overreact to the existing information. In our opinion, stick-
iness is the key property of the forecasts that we have explored and that
explains many of their shortcomings.

We have used the random forest regression and the ridge regression ma-
chine learning models to represent the machine forecasts, prioritising the
latter model due to its superior performance. The ridge model has outper-
formed the Forecasters on the majority of the horizons. When looking for
reasons of this superior performance, we have looked at the machine and
human performance in the pre-Covid and the post-Covid periods sepa-
rately. There has been a major shift in inflation paradigm post-Covid with
inflation going up to rates unprecedented since decades. The ridge model
has been able to adapt to the inflation paradigm shift to a much greater de-
gree than the Forecasters. Ridge regression performance pre-Covid is far
superior than that of humans. This can be explained by the Forecasters’
stickiness and underreaction to the new information that may indicate the
inflation paradigm shift. Thus, the machine is far better at adjusting to the
new conditions and can definitely beat the human analysts in this aspect.

However, when looking at the pre-Covid performance, the situation is
more balanced. While on the horizons (1 rolling year and 2 rolling years)
where there is the most train data for the models, the ridge regression
has outperformed the Forecasters, it has done so with a small advantage.
Moreover, the ’Star’ Forecasters have shown superior performance rela-
tive to the ridge model on one of these 2 horizons, even though in our
opinion luck has been a major factor. Furthermore, on the horizons where
there was is train data (2-29 months), Forecasters have made more accurate
predictions than the machine. Therefore, in the usual inflation paradigm
context the winner is currently harder to determine. More studies with
more data are needed. When there is limited data and when there is no
shift in conditions happening, professional economic intuition and under-
standing of the usual patterns may be preferred. When train data sam-
ple is big enough, in the ’regular’ framework, machines may outperform
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the general pool of the Forecasters with a slight margin. When there is a
shift in macroeconomic conditions, machine predictions are preferred as
the Forecasters exhibit stickiness to the previous framework.

We have also searched for the evidence of persistence positive and neg-
ative bias that the Forecasters may exhibit on the 1 rolling and 2 rolling
years prediction horizons. When taking the post-Covid inflation out of
the picture, the Forecasters exhibit a slight negative bias which may not
be significant on the 1 rolling year prediction horizon. However, on the 2
rolling years prediction horizon, the Forecasters exhibit a significant pos-
itive bias. In our opinion, it is due to Forecasters’ long-term expectations
being anchored to the ECB target inflation rate and due to the inflation in
the Euro area consistently being lower than the target in the pre-Covid pe-
riod.

In summary, while the potential for machines to outperform human an-
alysts definitely exists, machine learning models require sufficient train-
ing. Machines may be preferred in uncertain and changing situations, as
information rigidity is the main drawback of human forecasts we have
identified. Combining machine and human predictions may represent a
superior approach and could be a direction of further research.
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I8.N.PRIN.2C0000.4.000&start=&end=&submitOptions.x=0&
submitOptions.y=0&trans=YPC.
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