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Abstract

This research paper will provide a kit of “everything that needs to be known” about volatility to anyone
coming from any scholastic background. It will allow the reader to understand how to use the Heston and Stochastic
Alpha Beta Rho (SABR) models through MATLAB and the Monte Carlo and Black-Scholes processes through
Excel. Another objective is to bring into practical terms all the theoretical formulas and concepts and see which
of the previously stated construction methodologies performs best under various circumstances.

There will firstly be an introduction to the concept of volatility. The importance of the implied volatility surface
will then be shown and there will be explanations of the various construction methodologies for implied volatility
surfaces, varying form local stochastic volatility models to Levy processes and parametric representations.

In the empirical experimentations section, the Heston, SABR and Monte Carlo models will be put at comparison
and will be examined in terms of correctly portraying the market implied volatility surface and market option prices
for five equities. There will additionally be an attempt to capture the dynamics of the implied volatility surface
through the examination of how the market and models’ surfaces evolve throughout time.

We will see that the SABR model is the most appropriate construction methodology with respect to both esti-
mating implied volatility surfaces and calibrating option prices among the three analysed throughout the empirical
section. However, it must also be noted that better implied volatility estimation does not necessarily mean better
option price calibration, and vice-versa. Lastly, a model that is more precise than the others does not guarantee
that it is precise when compared to market data.
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87 Goldman Sachs Heston Implied Volatility (%/100) - Put - 06/04/16 . . . . . . . . . . . . . 64
88 Goldman Sachs SABR Implied Volatility (%/100) - Put - 06/04/16 . . . . . . . . . . . . . 64
89 Goldman Sachs Monte Carlo Implied Volatility (%/100) - Put - 06/04/16 . . . . . . . . . 64
90 Goldman Sachs Heston - Market price di↵erential ($) - Put - 06/04/16 . . . . . . . . . . . 64
91 Goldman Sachs SABR - Market price di↵erential ($) - Put - 06/04/16 . . . . . . . . . . . 65
92 Goldman Sachs Monte Carlo - Market price di↵erential ($) - Put - 06/04/16 . . . . . . . 65
93 Goldman Sachs Market Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . . . . . 65
94 Goldman Sachs Heston Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . . . . . 66
95 Goldman Sachs SABR Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . . . . . . 66
96 Goldman Sachs Monte Carlo Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . . 66
97 Goldman Sachs Heston - Market price di↵erential ($) - Call - 14/04/16 . . . . . . . . . . 66
98 Goldman Sachs SABR - Market price di↵erential ($) - Call - 14/04/16 . . . . . . . . . . . 66
99 Goldman Sachs Monte Carlo - Market price di↵erential ($) - Call - 14/04/16 . . . . . . . 67
100 Goldman Sachs Market Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . . . . . 67
101 Goldman Sachs Heston Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . . . . . . 67
102 Goldman Sachs SABR Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . . . . . . 67
103 Goldman Sachs Monte Carlo Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . . 68
104 Goldman Sachs Heston - Market price di↵erential ($) - Put - 14/04/16 . . . . . . . . . . . 68
105 Goldman Sachs SABR - Market price di↵erential ($) - Put - 14/04/16 . . . . . . . . . . . 68
106 Goldman Sachs Monte Carlo - Market price di↵erential ($) - Put - 14/04/16 . . . . . . . 68
107 Goldman Sachs Market Implied Volatility (%/100) - Call - 19/04/16 . . . . . . . . . . . . 69
108 Goldman Sachs Heston Implied Volatility (%/100) - Call - 19/04/16 . . . . . . . . . . . . 69
109 Goldman Sachs SABR Implied Volatility (%/100) - Call - 19/04/16 . . . . . . . . . . . . . 69
110 Goldman Sachs Monte Carlo Implied Volatility (%/100) - Call - 19/04/16 . . . . . . . . . 69
111 Goldman Sachs Heston - Market price di↵erential ($) - Call - 19/04/16 . . . . . . . . . . 70
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112 Goldman Sachs SABR - Market price di↵erential ($) - Call - 19/04/16 . . . . . . . . . . . 70
113 Goldman Sachs Monte Carlo - Market price di↵erential ($) - Call - 19/04/16 . . . . . . . 70
114 Goldman Sachs Market Implied Volatility (%/100) - Put - 19/04/16 . . . . . . . . . . . . 70
115 Goldman Sachs Heston Implied Volatility (%/100) - Put - 19/04/16 . . . . . . . . . . . . . 71
116 Goldman Sachs SABR Implied Volatility (%/100) - Put - 19/04/16 . . . . . . . . . . . . . 71
117 Goldman Sachs Monte Carlo Implied Volatility (%/100) - Put - 19/04/16 . . . . . . . . . 71
118 Goldman Sachs Heston - Market price di↵erential ($) - Put - 19/04/16 . . . . . . . . . . . 71
119 Goldman Sachs SABR - Market price di↵erential ($) - Put - 19/04/16 . . . . . . . . . . . 71
120 Goldman Sachs Monte Carlo - Market price di↵erential ($) - Put - 19/04/16 . . . . . . . 72
121 Zions Bancorporation Market Implied Volatility (%/100) - Call - 07/04/16 . . . . . . . . 72
122 Zions Bancorporation Heston Implied Volatility (%/100) - Call - 07/04/16 . . . . . . . . 73
123 Zions Bancorporation SABR Implied Volatility (%/100) - Call - 07/04/16 . . . . . . . . . 73
124 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Call - 07/04/16 . . . . . 73
125 Zions Bancorporation Heston - Market price di↵erential ($) - Call - 07/04/16 . . . . . . 73
126 Zions Bancorporation SABR - Market price di↵erential ($) - Call - 07/04/16 . . . . . . . 73
127 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Call - 07/04/16 . . . 74
128 Zions Bancorporation Market Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . 74
129 Zions Bancorporation Heston Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . . 74
130 Zions Bancorporation SABR Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . . 74
131 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Put - 07/04/16 . . . . . 75
132 Zions Bancorporation Heston - Market price di↵erential ($) - Put - 07/04/16 . . . . . . . 75
133 Zions Bancorporation SABR - Market price di↵erential ($) - Put - 07/04/16 . . . . . . . 75
134 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Put - 07/04/16 . . . 75
135 Zions Bancorporation Market Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . 76
136 Zions Bancorporation Heston Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . 76
137 Zions Bancorporation SABR Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . . 76
138 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Call - 04/04/16 . . . . . 76
139 Zions Bancorporation Heston - Market price di↵erential ($) - Call - 04/04/16 . . . . . . 77
140 Zions Bancorporation SABR - Market price di↵erential ($) - Call - 04/04/16 . . . . . . . 77
141 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Call - 04/04/16 . . . 77
142 Zions Bancorporation Market Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . 78
143 Zions Bancorporation Heston Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . . 78
144 Zions Bancorporation SABR Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . . 78
145 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Put - 04/04/16 . . . . . 78
146 Zions Bancorporation Heston - Market price di↵erential ($) - Put - 04/04/16 . . . . . . . 78
147 Zions Bancorporation SABR - Market price di↵erential ($) - Put - 04/04/16 . . . . . . . 79
148 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Put - 04/04/16 . . . 79
149 Zions Bancorporation Market Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . 79
150 Zions Bancorporation Heston Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . 80
151 Zions Bancorporation SABR Implied Volatility (%/100) - Call - 14/04/16 . . . . . . . . . 80
152 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Call - 14/04/16 . . . . . 80
153 Zions Bancorporation Heston - Market price di↵erential ($) - Call - 14/04/16 . . . . . . 80
154 Zions Bancorporation SABR - Market price di↵erential ($) - Call - 14/04/16 . . . . . . . 80
155 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Call - 14/04/16 . . . 81
156 Zions Bancorporation Market Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . 81
157 Zions Bancorporation Heston Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . . 81
158 Zions Bancorporation SABR Implied Volatility (%/100) - Put - 14/04/16 . . . . . . . . . 81
159 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Put - 14/04/16 . . . . . 82
160 Zions Bancorporation Heston - Market price di↵erential ($) - Put - 14/04/16 . . . . . . . 82
161 Zions Bancorporation SABR - Market price di↵erential ($) - Put - 14/04/16 . . . . . . . 82
162 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Put - 14/04/16 . . . 82
163 Zions Bancorporation Market Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . 83
164 Zions Bancorporation Heston Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . 83
165 Zions Bancorporation SABR Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . . 83
166 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Call - 11/04/16 . . . . . 83
167 Zions Bancorporation Heston - Market price di↵erential ($) - Call - 11/04/16 . . . . . . 84
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168 Zions Bancorporation SABR - Market price di↵erential ($) - Call - 11/04/16 . . . . . . . 84
169 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Call - 11/04/16 . . . 84
170 Zions Bancorporation Market Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . 85
171 Zions Bancorporation Heston Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . . 85
172 Zions Bancorporation SABR Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . . 85
173 Zions Bancorporation Monte Carlo Implied Volatility (%/100) - Put - 11/04/16 . . . . . 85
174 Zions Bancorporation Heston - Market price di↵erential ($) - Put - 11/04/16 . . . . . . . 85
175 Zions Bancorporation SABR - Market price di↵erential ($) - Put - 11/04/16 . . . . . . . 86
176 Zions Bancorporation Monte Carlo - Market price di↵erential ($) - Put - 11/04/16 . . . 86
177 Google Market Implied Volatility (%/100) - Call - 26/04/16 . . . . . . . . . . . . . . . . . . 87
178 Google Heston Implied Volatility (%/100) - Call - 26/04/16 . . . . . . . . . . . . . . . . . . 87
179 Google SABR Implied Volatility (%/100) - Call - 26/04/16 . . . . . . . . . . . . . . . . . . 87
180 Google Monte Carlo Implied Volatility (%/100) - Call - 26/04/16 . . . . . . . . . . . . . . 87
181 Google Heston - Market price di↵erential ($) - Call - 26/04/16 . . . . . . . . . . . . . . . . 87
182 Google SABR - Market price di↵erential ($) - Call - 26/04/16 . . . . . . . . . . . . . . . . 88
183 Google Monte Carlo - Market price di↵erential ($) - Call - 26/04/16 . . . . . . . . . . . . 88
184 Google Market Implied Volatility (%/100) - Put - 26/04/16 . . . . . . . . . . . . . . . . . . 88
185 Google Heston Implied Volatility (%/100) - Put - 26/04/16 . . . . . . . . . . . . . . . . . . 88
186 Google SABR Implied Volatility (%/100) - Put - 26/04/16 . . . . . . . . . . . . . . . . . . 89
187 Google Monte Carlo Implied Volatility (%/100) - Put - 26/04/16 . . . . . . . . . . . . . . 89
188 Google Heston - Market price di↵erential ($) - Put - 26/04/16 . . . . . . . . . . . . . . . . 89
189 Google SABR - Market price di↵erential ($) - Put - 26/04/16 . . . . . . . . . . . . . . . . . 89
190 Google Monte Carlo - Market price di↵erential ($) - Put - 26/04/16 . . . . . . . . . . . . 89
191 Google Market Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . . . . . . . . . . . 90
192 Google Heston Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . . . . . . . . . . . 90
193 Google SABR Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . . . . . . . . . . . 90
194 Google Monte Carlo Implied Volatility (%/100) - Call - 04/04/16 . . . . . . . . . . . . . . 91
195 Google Heston - Market price di↵erential ($) - Call - 04/04/16 . . . . . . . . . . . . . . . . 91
196 Google SABR - Market price di↵erential ($) - Call - 04/04/16 . . . . . . . . . . . . . . . . 91
197 Google Monte Carlo - Market price di↵erential ($) - Call - 04/04/16 . . . . . . . . . . . . 91
198 Google Market Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . . . . . . . . . . . 92
199 Google Heston Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . . . . . . . . . . . 92
200 Google SABR Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . . . . . . . . . . . 92
201 Google Monte Carlo Implied Volatility (%/100) - Put - 04/04/16 . . . . . . . . . . . . . . 92
202 Google Heston - Market price di↵erential ($) - Put - 04/04/16 . . . . . . . . . . . . . . . . 93
203 Google SABR - Market price di↵erential ($) - Put - 04/04/16 . . . . . . . . . . . . . . . . . 93
204 Google Monte Carlo - Market price di↵erential ($) - Put - 04/04/16 . . . . . . . . . . . . 93
205 Google Market Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . . . . . 94
206 Google Heston Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . . . . . 94
207 Google SABR Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . . . . . 94
208 Google Monte Carlo Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . 94
209 Google Heston - Market price di↵erential ($) - Call - 01/04/16 . . . . . . . . . . . . . . . . 94
210 Google SABR - Market price di↵erential ($) - Call - 01/04/16 . . . . . . . . . . . . . . . . 95
211 Google Monte Carlo - Market price di↵erential ($) - Call - 01/04/16 . . . . . . . . . . . . 95
212 Google Market Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . . . . . 95
213 Google Heston Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . . . . . 95
214 Google SABR Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . . . . . 96
215 Google Monte Carlo Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . 96
216 Google Heston - Market price di↵erential ($) - Put - 01/04/16 . . . . . . . . . . . . . . . . 96
217 Google SABR - Market price di↵erential ($) - Put - 01/04/16 . . . . . . . . . . . . . . . . . 96
218 Google Monte Carlo - Market price di↵erential ($) - Put - 01/04/16 . . . . . . . . . . . . 96
219 Exxon Mobil Market Implied Volatility (%/100) - Call - 07/04/16 . . . . . . . . . . . . . . 97
220 Exxon Mobil Heston Implied Volatility (%/100) - Call - 07/04/16 . . . . . . . . . . . . . . 97
221 Exxon Mobil SABR Implied Volatility (%/100) - Call - 07/04/16 . . . . . . . . . . . . . . 98
222 Exxon Mobil Monte Carlo Implied Volatility - Call - 07/04/16 . . . . . . . . . . . . . . . . 98
223 Exxon Mobil Heston - Market price di↵erential ($) - Call - 07/04/16 . . . . . . . . . . . . 98
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224 Exxon Mobil SABR - Market price di↵erential ($) - Call - 07/04/16 . . . . . . . . . . . . 98
225 Exxon Mobil Monte Carlo - Market price di↵erential ($) - Call - 07/04/16 . . . . . . . . 98
226 Exxon Mobil Market Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . . . . . . . 99
227 Exxon Mobil Heston Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . . . . . . . 99
228 Exxon Mobil SABR Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . . . . . . . . 99
229 Exxon Mobil Monte Carlo Implied Volatility (%/100) - Put - 07/04/16 . . . . . . . . . . . 99
230 Exxon Mobil Heston - Market price di↵erential ($) - Put - 07/04/16 . . . . . . . . . . . . 100
231 Exxon Mobil SABR - Market price di↵erential ($) - Put - 07/04/16 . . . . . . . . . . . . . 100
232 Exxon Mobil Monte Carlo - Market price di↵erential ($) - Put - 07/04/16 . . . . . . . . . 100
233 Exxon Mobil Market Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . 101
234 Exxon Mobil Heston Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . 101
235 Exxon Mobil SABR Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . . . . . 101
236 Exxon Mobil Monte Carlo Implied Volatility (%/100) - Call - 01/04/16 . . . . . . . . . . 101
237 Exxon Mobil Heston - Market price di↵erential ($) - Call - 01/04/16 . . . . . . . . . . . . 102
238 Exxon Mobil SABR - Market price di↵erential ($) - Call - 01/04/16 . . . . . . . . . . . . 102
239 Exxon Mobil Monte Carlo - Market price di↵erential ($) - Call - 01/04/16 . . . . . . . . 102
240 Exxon Mobil Market Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . 102
241 Exxon Mobil Heston Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . 103
242 Exxon Mobil SABR Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . . . . . 103
243 Exxon Mobil Monte Carlo Implied Volatility (%/100) - Put - 01/04/16 . . . . . . . . . . . 103
244 Exxon Mobil Heston - Market price di↵erential ($) - Put - 01/04/16 . . . . . . . . . . . . 103
245 Exxon Mobil SABR - Market price di↵erential ($) - Put - 01/04/16 . . . . . . . . . . . . . 103
246 Exxon Mobil Monte Carlo - Market price di↵erential ($) - Put - 01/04/16 . . . . . . . . . 104
247 Exxon Mobil Market Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . . . . . . . 104
248 Exxon Mobil Heston Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . . . . . . . 104
249 Exxon Mobil SABR Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . . . . . . . 105
250 Exxon Mobil Monte Carlo Implied Volatility (%/100) - Call - 11/04/16 . . . . . . . . . . 105
251 Exxon Mobil Heston - Market price di↵erential ($) - Call - 11/04/16 . . . . . . . . . . . . 105
252 Exxon Mobil SABR - Market price di↵erential ($) - Call - 11/04/16 . . . . . . . . . . . . 105
253 Exxon Mobil Monte Carlo - Market price di↵erential ($) - Call - 11/04/16 . . . . . . . . 105
254 Exxon Mobil Market Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . . . . . . . 106
255 Exxon Mobil Heston Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . . . . . . . 106
256 Exxon Mobil SABR Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . . . . . . . . 106
257 Exxon Mobil Monte Carlo Implied Volatility (%/100) - Put - 11/04/16 . . . . . . . . . . . 106
258 Exxon Mobil Heston - Market price di↵erential ($) - Put - 11/04/16 . . . . . . . . . . . . 107
259 Exxon Mobil SABR - Market price di↵erential ($) - Put - 11/04/16 . . . . . . . . . . . . . 107
260 Exxon Mobil Monte Carlo - Market price di↵erential ($) - Put - 11/04/16 . . . . . . . . . 107
261 Citigroup Market Implied Volatility Surface (%/100) - Call - 28/03/16 . . . . . . . . . . . 108
262 Citigroup Heston Implied Volatility Surface (%/100) - Call - 28/03/16 . . . . . . . . . . . 108
263 Citigroup SABR Implied Volatility Surface (%/100) - Call - 28/03/16 . . . . . . . . . . . 109
264 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Call - 28/03/16 . . . . . . . 109
265 Citigroup Market Implied Volatility Surface (%/100) - Put - 28/03/16 . . . . . . . . . . . 109
266 Citigroup Heston Implied Volatility Surface (%/100) - Put - 28/03/16 . . . . . . . . . . . 110
267 Citigroup SABR Implied Volatility Surface (%/100) - Put - 28/03/16 . . . . . . . . . . . . 110
268 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Put - 28/03/16 . . . . . . . 110
269 Citigroup Market Implied Volatility Surface (%/100) - Call - 04/04/16 . . . . . . . . . . . 111
270 Citigroup Heston Implied Volatility Surface (%/100) - Call - 04/04/16 . . . . . . . . . . . 111
271 Citigroup SABR Implied Volatility Surface (%/100) - Call - 04/04/16 . . . . . . . . . . . 111
272 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Call - 04/04/16 . . . . . . . 111
273 Citigroup Market Implied Volatility Surface (%/100) - Put - 04/04/16 . . . . . . . . . . . 112
274 Citigroup Heston Implied Volatility Surface (%/100) - Put - 04/04/16 . . . . . . . . . . . 112
275 Citigroup SABR Implied Volatility Surface (%/100) - Put - 04/04/16 . . . . . . . . . . . . 112
276 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Put - 04/04/16 . . . . . . . 112
277 Citigroup Market Implied Volatility Surface (%/100) - Call - 11/04/16 . . . . . . . . . . . 113
278 Citigroup Heston Implied Volatility Surface (%/100) - Call - 11/04/16 . . . . . . . . . . . 113
279 Citigroup SABR Implied Volatility Surface (%/100) - Call - 11/04/16 . . . . . . . . . . . 113
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280 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Call - 11/04/16 . . . . . . . 113
281 Citigroup Market Implied Volatility Surface (%/100) - Put - 11/04/16 . . . . . . . . . . . 114
282 Citigroup Heston Implied Volatility Surface (%/100) - Put - 11/04/16 . . . . . . . . . . . 114
283 Citigroup SABR Implied Volatility Surface (%/100) - Put - 11/04/16 . . . . . . . . . . . . 114
284 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Put - 11/04/16 . . . . . . . 114
285 Citigroup Market Implied Volatility Surface (%/100) - Call - 18/04/16 . . . . . . . . . . . 115
286 Citigroup Heston Implied Volatility Surface (%/100) - Call - 18/04/16 . . . . . . . . . . . 115
287 Citigroup SABR Implied Volatility Surface (%/100) - Call - 18/04/16 . . . . . . . . . . . 115
288 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Call - 18/04/16 . . . . . . . 116
289 Citigroup Market Implied Volatility Surface (%/100) - Put - 18/04/16 . . . . . . . . . . . 116
290 Citigroup Heston Implied Volatility Surface (%/100) - Put - 18/04/16 . . . . . . . . . . . 116
291 Citigroup SABR Implied Volatility Surface (%/100) - Put - 18/04/16 . . . . . . . . . . . . 116
292 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Put - 18/04/16 . . . . . . . 117
293 Citigroup Market Implied Volatility Surface (%/100) - Call - 25/04/16 . . . . . . . . . . . 117
294 Citigroup Heston Implied Volatility Surface (%/100) - Call - 25/04/16 . . . . . . . . . . . 117
295 Citigroup SABR Implied Volatility Surface (%/100) - Call - 25/04/16 . . . . . . . . . . . 118
296 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Call - 25/04/16 . . . . . . . 118
297 Citigroup Market Implied Volatility Surface (%/100) - Put - 25/04/16 . . . . . . . . . . . 118
298 Citigroup Heston Implied Volatility Surface (%/100) - Put - 25/04/16 . . . . . . . . . . . 118
299 Citigroup SABR Implied Volatility Surface (%/100) - Put - 25/04/16 . . . . . . . . . . . . 119
300 Citigroup Monte Carlo Implied Volatility Surface (%/100) - Put - 25/04/16 . . . . . . . 119
301 Data Call -5 to -1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
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1 Introduction: what is volatil-
ity?

1.1 Definition of volatility

Volatility takes various forms. It defines “how risky
an investment is”, or also “the likelihood of a stock
crashing”. We might also talk about stochastic volatil-
ity, which is volatility that can take di↵erent values in
option pricing models (and that hence is randomly dis-
tributed). Realised volatility (or historical volatility)
measures how the market has actually changed in the
past. It “a statistical measure of the dispersion of re-
turns for a given security or market index”5.
It could as well be implied volatility, which is the

volatility of an option that should persist shall various
assumptions about the� (the sensitivity of an option’s
price to changes in the underlying’s price), � (the first
derivative of �, or also the second derivative of the op-
tion’s price with respect to the spot price), ⇢ (the sen-
sitivity of an option’s price relative to interest rates),
✓ (the sensitivity of an option’s price relative to time
to expiration of the option), strike price K and price
of the derivative P are satisfied in the Black-Scholes
model. It is an expectation of “how volatile the mar-
ket can be in the future”6. It is “the � input into the
BSM formula that generates the market observed op-
tion price”7. Let us quickly remember the assumptions
of the Black-Scholes model:
1. The asset’s asset price follows a Geometric Brow-

nian Motion with � and r
f

constant.
2. Short selling of securities is allowed.
3. No frictions.
4. No dividends.
5. No arbitrage opportunities.
6. Continuous markets.
7. r is constant for every maturity.8.
When talking about implied volatility, it can be con-

sidered as an alternative way of pricing a derivative.
Traders often execute transactions based on their be-
liefs of implied volatility. When implied volatility is
relatively high, there are expectations of a big market
movement. When it is low, the market (or better, the
price of the specific derivative) is expected to remain
relatively stable.
Commonly marked with a �, which stands for stan-

dard deviation, volatility is a key aspect of pricing
options and, as we will see throughout this research
paper, multiple models ave tried to capture the exac-
titude of implied volatility of options with respect to
the ✓ and the K of the option. Traders often base their

5http://www.investopedia.com/terms/v/volatility.asp
6https://www.tradeking.com/education/options/
what-is-implied-volatility

7http://faculty.baruch.cuny.edu/lwu/9797/Lec8.pdf
8http://www2.math.su.se/matstat/reports/seriec/
2011/rep7/report.pdf

trades on implied volatility instead of on the option
price itself.
There is a positive relationship between the volatil-

ity of an option and its price. Indeed, the higher the
volatility of an option, the higher the probability of
that option finishing in-the-money.

1.2 Why is volatility so important?

As stated previously, there are di↵erent types of
volatility. Throughout this research paper we will be
focusing a lot on implied volatility, which is calcu-
lated form the Black-Scholes-Merton model. But why
use implied volatility instead of using option prices di-
rectly when quoting? It is more straightforward to
express a view with respect to implied volatility than
with respect to option prices. Indeed, implied volatil-
ity does not vary when there is a variation in the spot
price and/or in the strike and/or in the option pre-
mium. Therefore, implied volatility is not dependent
upon intrinsic value; while option prices are. How-
ever, the intrinsic value has no real information value.
Implied volatility, additionally, “has the normal return
distribution (Black-Scholes-Merton model) as a bench-
mark”9.
As an example, a call with 2 years to expiration,

strike price $50 priced at $2.5 cannot really be com-
pared to another call with 2 months to expiration,
strike at $45 and priced at $3. However, if the first one
has an implied volatility of 30% and the second one an
implied volatility of 50%, the comparison is clearer.
Moreover, if options are quoted with respect to

a positive implied volatility surface, the type 1 no-
arbitrage conditions will be directly insured10, where
the type 1 no-arbitrage condition is the no-arbitrage
condition between European options of a predeter-
mined strike and a predetermined maturity vs. the
underlying cash11.
Lastly, there is also the technological aspect to it:

when there is no options order flow, there is no neces-
sity to update the implied volatility surface as often as
option prices12.

1.3 What a↵ects volatility?

When there is a disequilibrium between demand and
supply for an underlying, the implied volatility of the
derivative changes too.
When there is very high demand, the price of the

security rises, as well as its implied volatility. The
opposite is true when there is excess supply, and the
option becomes cheaper.

9Carr and Wu - A new simple approach for constructing im-
plied volatility surfaces. (2011)

10Ibidem
11Ibidem
12Ibidem
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The time value of a derivative is also a key factor
determining the total implied volatility of the deriva-
tive itself. Indeed, taking the example of an option,
the longer is the time to expiration, the higher the
chance that the price of the option has in order to vary
throughout time, which means higher implied volatil-
ity13.
Lastly, the strike price K of an option is a vital aspect

of determining how much volatility an option has. The
closer the option’s price is to the strike price, the higher
the volatility. Hence, at-the-money options have the
highest implied volatilities.

1.4 Realised volatility vs. Implied
volatility: empirical evidence

Figure 1: S&P’s realised vs. implied volatility,
1990 - 2010 14

As you can see, when the market is not in tur-
moil, realised volatility is actually lower than implied
volatility. The opposite is true when there are market
crashes: see as examples the Russian and South East
Asian crises of the late 90s and the Financial Crisis of
2008.

1.5 Volatility smiles, skews and the
volatility term structure

What models do traders use when pricing options?
Do they really use the Black-Scholes-Merton model or
do they use a slightly di↵erent version of it? Are mar-
ket prices of options very di↵erent or close to those
predicted by Black-Scholes-Merton? “Are the proba-
bility distributions of asset prices really lognormally
distributed?”15 In order to answer these questions, a

13http://www.investopedia.com/terms/i/iv.asp
14http://www.spvixviews.com/wp-content/uploads/

2012/02/Exhibit-13-SP-500-Implied-Volatility-vs.-
Subsequent-Realized-Volatility.jpg

15J. C. Hull - Options, Futures, and other Derivatives

closer look at the concept of volatility smile has to be
given.

The key takeaway is that traders use a modified ver-
sion of the Black-Scholes-Merton: one where they allow
volatility to be stochastic and dependent on K and ✓.
Let us see how volatility smiles work for both equity
and foreign currency options.

As stated previously, implied volatility is a function
of both K and ✓. When implied volatility is a function
of exclusively the strike price, we observe empirically
either volatility smiles or volatility skews.

The first one consists of a curve for which deep in-
the-money and deep out-of-the-money options have far
higher implied volatilities than at-the-money options.
An example of the volatility smile is that of FX options.

Figure 2: Volatility smile from Table 1, 1 year
to maturity

The volatility skew is instead present in equity op-
tions and equity index options markets. It consists of a
downward sloping convex curve where implied volatil-
ity decreases as the spot price of the options increases.
Therefore, it is very low for in-the-money calls and
out-of-the-money puts. An example is how in equity
derivatives markets “extreme events” (such as a stock
crash) are associated with higher implied volatilities,
where a bearish market is riskier (and hence has higher
volatility) than a bullish one16.

Eighth Edition. (2012)
16L. Marroni, I. Perdomo - Pricing and Hedging Financial

Derivatives - A guide for Practitioners. (2014)

15



Figure 3: Volatility skew example

Reasons for a volatility skew include: leverage
(stocks are more volatile at lower prices than higher
ones); strong negative correlation between volatility
and spot price moves; jumps in prices are more often
seen downwards than upwards; supply and demand,
as described previously. The volatility skew has been
existing since the 1987 stock market crash17.
We also need to take into account the T relation-

ship, where T stands for time to maturity: the term
structure of volatility plots implied volatility against T.
Usually there is a direct relationship between the two
variables. In other words, the lower is the time to expi-
ration, the higher is the implied volatility. Therefore,
the relationship between implied volatility and matu-
rity can be thought of as a decreasing convex curve.
Thus, traders do not use the exact forms of the

Black-Scholes-Merton model, because of various rea-
sons: firstly they allow for the strike price and time to
maturity to vary, and secondly they assume a distribu-
tion for the asset (be it FX, equities, etc.) prices that
is not lognormal.
While remembering that the implied volatility of Eu-

ropean calls is the same as that of European puts, let
us recall the put-call parity18:

p+ S0e
�qT = c+Ke�rT (1)

where q is the asset dividend yield. The put-call parity
condition is true whatever the distribution of the asset
price. Since put-call parity holds for the Black-Scholes
model:

p
BS

+ S0e
�qT = c

BS

+Ke�rT (2)

In a no-arbitrage situation then we also have, for mar-
ket prices:

p
mkt

+ S0e
�qT = c

mkt

+Ke�rT (3)

17http://faculty.baruch.cuny.edu/jgatheral/
impliedvolatilitysurface.pdf

18J. C. Hull - Options, Futures, and other Derivatives
Eighth Edition. (2012)

If we subtract the two equations, we have:

p
BS

� p
mkt

= c
BS

� c
mkt

(4)

Thus, if for example the implied volatility of a call
option is 15%, then the Black-Scholes call price equals
the market price of the call option when a volatility
of 15% is used in the BSM model. Hence, given K
and T, the correct volatility to use with the Black-
Scholes-Merton model to price a European call should
be the same as the one that is used to price a European
put. Consequently the volatility smile is identical for
both European calls and European puts, as well as the
volatility term structure19.

For foreign currency options, empirical evidence is
that the lognormal distribution “understates the prob-
ability of extreme movements in exchange rates”20 .
The reasons for a smile in foreign currency options
are that the volatility of the asset is not constant and
that there are occasional jumps. The impact of these
two characteristics of foreign currency options depends
on T. As the time to maturity increases, the impact
of non-constant volatility is more significant while the
percentage impact on implied volatility is less so. On
the other hand, the impact of jumps on prices and im-
plied volatility becomes smaller and smaller as T aug-
ments. Therefore, “the volatility smile becomes less
pronounced as option maturity increases”21.

When analysing equity options, because of what
stated previously about leverage, the implied distri-
bution is characterised by a fatter left tail and thin-
ner right tail then the lognormal distribution. Indeed,
as the stock price of an asset decreases, the leverage
increases, making the stock more risky, with a conse-
quent increase in volatility. Vice-versa, when a firm’s
equity increases in value, the amount of leverage de-
creases, making the stock less risky and thus a conse-
quent decrease in volatility. Moreover, another expla-
nation for the volatility skew in equity options is that
since the October 1987 crash traders have become more
scared of crashes, and they have since then adjusted for
such probability when pricing options.

It is important to use K/S0 instead of K simply when
plotting the volatility skew, because if there is a change
in the equity price, then the volatility skew tends to
move. This way there is much more stability in the
skew and hence using such standardised measure allows
to compare charts across various maturities and asset
classes. Sometimes F0 is used instead of S0, since F0

is the “expected stock price on the option’s maturity
date in a risk-neutral world”22. Other practitioners,
such as Wu, use an even more standardised measure

19Ibidem
20Ibidem
21Ibidem
22Ibidem
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for the moneyness of the option, which is
Ln

⇣
K

F0

⌘

�

p
T

23,

where � is the at-the-money volatility of the option.
Other standardized measures include d1, d2 and �.

The volatility smile can also be defined as the rela-
tionship between the implied volatility and the delta of
the option, where usually the at-the-money option is
a call option with a delta equal to 0.5 or a put option
with a delta equal to -0.5.

The assumption of lognormality of the probability
distribution of the underlying asset is made by the
Black-Scholes-Merton model, but not by traders. The
tails are fatter for FX options and the left tail of an
equity option is fatter while its right tail is flatter when
compared to the respective lognormal distributions.
Fatter left tails are also said to exhibit leptokurtosis.
For equity options, since the volatility smile is actually
a skew, there is negative skewness in the distribution.
Lastly, “for stock indexes the distributions are nega-
tively skewed at both short and long horizons”24.

Thus, non-flat implied volatility curves show that
the distribution of returns of the underlying security
is not at all normally distributed25. The reason why
traders use volatility smiles is because “volatility smiles
allow for nonlognormality”26.

1.6 What is an implied volatility sur-
face?

An implied volatility surface plots the implied
volatility of the option of a particular asset as a func-
tion of strike price K and time to maturity ✓. There
are two types of implied volatility surfaces: the one
just described is an absolute implied volatility surface.
If instead of using K, � is used, then the result is a
relative implied volatility surface27.

The volatility surface is a combination of the volatil-
ity smile/skew and the term structure of volatility, re-
sulting in a 3-D graph, as Figure 4 shows. As stated
previously, it is important to note that implied volatil-
ity and time to maturity have a direct relationship
when short-dated volatilities are historically low, since
there are expectations for the volatilities to increase28.
The opposite is true when short-dated volatilities are
historically high, since there is an expectation for
volatilities to decrease.

23http://faculty.baruch.cuny.edu/lwu/9797/Lec8.pdf
24Ibidem
25Ibidem
26J. C. Hull - Options, Futures, and other Derivatives

Eighth Edition. (2012)
27https://en.wikipedia.org/wiki/Volatility smile
28J. C. Hull - Options, Futures, and other Derivatives

Eighth Edition. (2012)

Figure 4: Implied Volatility Surface developed
on MATLAB 29

Table 1 shows an example of implied volatility sur-
face data (with the respective graph, Figure 5).

Table 1: Volatility Surface example

K/S0

0.90 0.95 1.00 1.05 1.10
1 month 14.2 13.0 12.0 13.1 14.5
3 month 14.0 13.0 12.0 13.1 14.2
6 month 14.1 13.3 12.5 13.4 14.3
1 year 14.7 14.0 13.5 14.0 14.8
2 year 15.0 14.4 14.0 14.5 15.1

Usually some of the data correspond to options for
which trustworthy market prices can be retrieved. As
a consequence, the implied volatilities for these specific
prices and maturities are calculated directly, while the
rest of the table is completed through interpolation.
As an example, a 2 month option with a K/S0 ratio
of 1.10 would be interpreted by the financial engineer
as having a value between 14.2 and 14.5; for example,
using the average of the two numbers, 14.35%. This is
the number that would be used in the Black-Scholes-
Merton formula. So, “some points on a volatility sur-
face for a particular asset can be estimated directly
because they correspond to actively traded options”30.

29http://www.mathworks.com/matlabcentral/fileexchange/23316-
volatility-surface/content/VolSurface.m

30http://www-2.rotman.utoronto.ca/ hull/
downloadablepublications/DHSPaperdraft7.pdf
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Figure 5: Volatility Surface of Table 1

Certain financial engineers define the volatility smile
as the relation between implied volatility and the fol-

lowing 1p
T

Ln
⇣

K

F0

⌘

instead of that between the implied

volatility and K31.
The choosing of the model is fundamental to the

shape of the volatility surface. If traders chose a model
di↵erent to the Black-Scholes-Merton one, then, even
with the shape of the smile changing, “the dollar prices
that are quoted in the market would arguably not
change appreciably”32. What has to be underlined is
that “models have the most e↵ect on the pricing of
derivatives when the derivatives do not trade actively
in the market”33, such as certain exotic options.
Volatility surfaces are used by traders to value Eu-

ropean options when the price of such options cannot
be directly observes in the market34. There is however
a problem with exotic options such as barrier options,
because, as Hull and Suo underline, the approach can-
not be really extended to path-dependent exotic op-
tions. Hence, some model risk exists.
Another use of the volatility surface is to hedge

against changes in asset prices.

1.7 What does the implied volatility
surface communicate to us?

Let us firstly assume that the volatility surface is
being built form European option prices. Let us also
consider a butterfly strategy where we are:
1: long a call with strike K - �K
2: long a call with strike K + �K
3: short two calls with strike K
The value of the strategy, B0 at t = 0 is the following:

31J. C. Hull - Options, Futures, and other Derivatives
Eighth Edition. (2012)

32Ibidem
33Ibidem
34http://www-2.rotman.utoronto.ca/ hull/

downloadablepublications/DHSPaperdraft7.pdf

B0 = e�rT f(K,T )(�K)2 (5)

where f(K,T) is the Probability Density Function of S
T

at strike price K:

f(K,T ) ⇡ erT
C(K ��K,T )� 2C(K,T )

(�K)2

+
C(K +�K,T )

(�K)2
(6)

and if �K goes towards 0, we have that

f(K,T ) = erT
@2C

@K2
(7)

“The volatility surface therefore gives the marginal
risk-neutral distribution of the stock price, S

T

, for any
time, T”35. However, no information is given regarding
the the joint distribution of the stock price at various
periods T1, ..., Tn

. This result makes sense as the im-
plied volatility surface is built from European option
prices and these prices depend exclusively on the vari-
ous marginal distributions of S

T

36.

1.8 Criteria for an e↵ective representa-
tion of the implied volatility surface

Three criteria are of fundamental importance if we
want to represent properly the volatility surface:
1: Parsimony - the representation must have the

minimum amount of information that is requested to
have the entire implied volatility surface for all strike
prices and times to maturity.
2: Consistency - the information included in the rep-

resentation is constantly built along the times to matu-
rity and strikes, so that interpolation or extrapolation
of missing points is possible.
3: Intuitiveness - the information gives the user with

an understandable view about the shape of the implied
volatility surface, and “each piece of the information
distinctly a↵ects one specific trait of the volatility sur-
face”37

With the first criteria what is meant is that the
representation is parsimonious if one can set up an
interpolation-extrapolation scheme for both K and T,
hence requiring only very few points as inputs. In the-
ory, it should be hard to achieve, because for each ex-
piry, a volatility smile has as many degrees of free-
dom as strikes given. But empirically volatilities do
not move independently of each other, and it can be
assumed that there are only three degrees of freedom:

35http://www.columbia.edu/
mh2078/BlackScholesCtsTime.pdf

36Ibidem
37http://www.iasonltd.com/wp-

content/uploads/2013/02/2b.pdf
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level, slope and convexity. “In fact, as a principal com-
ponent analysis can show, most of shape variations can
be explained either by a parallel shift of the smile or by
a tilt to the right or to the left or by a relative change
of the wings with respect to the central strike”38. As
a consequence, the minimum number of points needed
at each time to maturity to portray the stylised move-
ments is three, and they would consist in the volatil-
ities for at-the-money options, out-of-the-money calls
and out-of-the-money puts.
Moreover, these strike triplets, one for each expiry,

must also be chosen in such a way that the resulting
representation is consistent. Let us think of a very
simple volatility surface with only two expiries: one
week and ten years. For both expiries, one of the
three strikes to choose may be set equal to the cur-
rent price of the underlying asset (at-the-money spot).
This choice is reasonable but not necessarily the best
one. In fact, it would be better to replace the two at-
the-money spot values with the forward prices at the
two expiries, which can be viewed as expected values
of the future underlying asset under suitable measures
(the corresponding forward risk adjusted measures).
Things can even be worse for the other two points,

since a meaningful selection criterion likely leads to dif-
ferent values for the two expiries: two chosen strikes
may convey a good amount of information regarding
the smile for the one week expiry, but may be not so
informative for the ten year expiry. In fact, what mat-
ters (under a probabilistic point of view) is the rela-
tive distance of a strike from the central one, possi-
bly expressed in volatility units, which makes the cho-
sen strikes, and their corresponding implied volatilities,
comparable throughout the entire range of expiries. A
meaningful distance measure is provided by the delta
of an option (in absolute terms), since it is a com-
mon indicator used in the market and it has the same
signalling power as the relative distance from the at-
the-money point (in units of total standard deviation).
Finally, the representation is intuitive if directly ex-

pressed in terms of three qualitative features of the
surface, instead of three implied volatilities. These
features, already mentioned above, are the level, the
steepness and the convexity of the smile for each ma-
turity. The level is correctly measured by the at-the
money volatility.
Regarding the sets of expiry dates, a fixed number of

maturities expressed as a fraction of years or as number
of X months to maturity is the most intuitive choice to
portray the implied volatility surface. Indeed, readers
have an easier time by comparing times to maturity
in the matrix and understand more intuitively which
volatility corresponds to which strike and time to ma-
turity39.

38Ibidem
39Ibidem
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2 No arbitrage conditions for
the implied volatility surface

We shall assume a dynamically complete mar-
ket. If there is no arbitrage opportunity then
there is an equivalent martingale measure char-
acterised “by the risk neutral transition density
of the underlying stochastic process denoted by
⇥(S

t

, T |S
t

, t, r
t,⌧

, �
t,⌧

)”40, where S
t

is the price at time
t, T = t + ⌧ = expiry date, ⌧ time to expiration, r

t,⌧

the risk-free rate and �
t,⌧

the dividend rate.
Moreover, we have that the valuation function of a

European call is the following:

C(S
t

, t,K, T, r
t,⌧

, �
t,⌧

) = e�r

t,⌧

⌧

⇤
1
Z

0

max(S
T

�K, 0)

⇥(S
t

, T |S
t

, t, r
t,⌧

, �
t,⌧

)dS
T

(8)

Since the price function of a call option is a decreas-
ing and convex function, deriving with respect to K,
and together with the fact that ⇥ is both always pos-
itive and integrable to one, one receives:

� e�r

t,⌧

⌧  @C(S
t

, t,K, T, r
t,⌧

, �
t,⌧

)

@K
 0 (9)

which means that there is monotonicity.

2.1 No butterfly arbitrage

Convexity comes from di↵erentiating to the second
degree with respect to the strike price (Breeden and
Litzenberger, 1978):

@2C(S
t

, t,K, T, r
t,⌧

, �
t,⌧

)

@K
= e�r

t,⌧

⌧⇥(S
t

, T |S
t

, t, r
t,⌧

, �
t,⌧

) � 0 (10)

2.2 No calendar arbitrage

Let us also take into consideration that the call price
is bounded by:

max(e��t,⌧S
t

� e�r
t,⌧

⌧K, 0)

 C(S
t

, t,K, T, r
t,⌧

, �
t,⌧

)  e��t,⌧⌧S
t

(11)

2.3 Other remarks

All these constraints lead to nonlinear conditions for
an arbitrage-free volatility surface. With the assump-

40M. R. Fengler - Arbitrage-Free Smoothing of the Implied
Volatility Surface. (2005)

tion of a strike-dependent volatility function, di↵eren-
tiating twice the Black-Scholes formula yields:

⇥(K,T |S
t

, t) = e��t,⌧⌧S
t

p
⌧⌘(d̄1)

"

1

K2�̂⌧
+

2d̂1
K�̂

p
⌧

@�̂

@K
+

d̄1d̄2
�̂

✓

@�̂

@K

◆2

+
@2�̂

@K2

#

(12)

“where ⌘ is the pdf of a standard normal value”41.
If we are to adopt no-arbitrage conditions, then the
implied volatility surface would need to assume that
⇥(K,T |S

t

, t) � 0 throughout all strikes and maturi-
ties. When considering T, there is only one weak con-
straint, which consist in the prices of American calls for
the same strikes to be non-decreasing. When there are
no dividends involved, the same rule applies to Euro-
pean calls42. However, the term structure of an implied
volatility surface may be downward sloping as well.
Kahale’ (2004) shows that, by treating the zero-

� and zero-r case (even if his approach can be
taken a step forward by having a deterministic, time-
dependent r

t

and a dividend yield �
t

“which are the
typical assumptions within the local volatility frame-
work”43), we have the following argument (proven by
Fengler in his thesis): “assume the existence of a deter-
ministic, time-dependent interest rate r

t

and a deter-
ministic, time-dependent dividend yield �

t

. If v2(k, ⌧
i

)
(which stands for our total variance) is a strictly in-
creasing function for ⌧

i

= T
i

� t and i = 1,2, there is
no calendar arbitrage”44.
So, an implied volatility surface gotten from con-

vex call price functions that observe C
t

(K2, T2) >

e
�

T2R

T1

�

t

dt

C
t

(K1, T1) or that is exclusively increasing in
the total variance, has no (calendar) arbitrage.
Haug adds that skews should not be too steep at

any given maturity, because otherwise there could be
butterfly arbitrages. Additionally, “the term structure
of the implied volatility cannot be too inverted”45, be-
cause otherwise there would be calendar spread arbi-
trages.
Let us now add Rebonato’s conditions that make

sure of the existence of a risk-neutral density:
1: Market Conditions -we are in a complete market,

with no taxes or transaction costs, no bid-ask spreads,
short-sales are possible.
2: Traded instruments - possibility to trade both

the underlying and plain-vanilla calls and put options
for every single strike and time to maturity. There
are also exists deterministic bonds and their income is
determined by the risk-free rate r, and the payo↵s of

41Ibidem
42Ibidem
43Ibidem
44Ibidem
45M. Haug - Black-Scholes and the Volatility Surface
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the options depend exclusively on the price evolution
of the underlying asset until expiration46.
The important equations to take into consideration

in order to not have arbitrages are (9), (10) and (11).
Henstchel (2003) states that possible errors in data

that can lead to arbitrage are the following: “bid-ask
bounce, asynchronous pricing and finite quote preci-
sion in option prices”47.

2.4 If there is arbitrage

Even if arbitrage situations exist, they need not be
removed necessarily from the data, and moreover im-
posing the “monotonicity and convexity constraints in-
troduces distortions in the observed process”48.
However there are two situations where the data

must be free of arbitrage: the first one is the “method
of extraction of risk neutral densities”49. Here it is vi-
tal that the data contains no arbitrage possibility so
that the density extraction is appropriate. The other
situation occurs through the model known as the “local
volatility” one (Dupire’s smile model)50.
Arbitrage situations (real or “pseudo” arbitrage,

the last one being potentially caused by prices mea-
sured with errors and retrieved through interpola-
tion/extrapolation) can be of major impact, “given the
nonlinear transformations applied in calls prices”51. In
density extractions in a risk-neutral world the arbi-
trage situations in option prices can lead to very bad
characteristics of the retrieved densities, “given that
risk neutral is related to di↵erentiate the data two
times, introducing large fluctuations. Arbitrage con-
ditions can lead to the presence of negative probability
points and multimodality in the extracted risk neutral
density”52.
In local volatility models, the arbitrages can condi-

tion badly the local volatility, since estimation of the
local volatilities has the possibility to be based through
the direct option quotations or in the potential volatil-
ity surface if there are no-arbitrage possibilities. “The
presence of arbitrage also a↵ects the stability proper-
ties of the numerical methods used in the resolution of
partial di↵erential equations present in local volatility
equations”53.

46M. Poletti Laurini - Imposing no-arbitrage conditions in
implied volatility surfaces using constrained smoothing
splines (2007)

47Ibidem
48Ibidem
49Ibidem
50Ibidem
51Ibidem
52Ibidem
53Ibidem
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3 Stochastic volatility and local
volatility

3.1 Stochastic volatility: The Valua-
tion Equation

“A stochastic volatility model is a model where the
volatility itself is a stochastic process”54. Stochastic
volatility models are key to volatility surface modelling
because they help explain why options with varying K
and T have varying BS implied volatilities55.
One popular model is the Heston model, where the

asset price follows a geometric brownian motion and
the volatility also follows a geometric brownian mo-
tion with mean reversion56. Remember that a geomet-
ric brownian motion is a stochastic process with the
following properties:
1. B

t

meaning the brownian motion and it has nor-
mal increments. B

t

- B
s

N ⇠ (0, t-s).
2. The increments are independent. B

t

- B
s

is inde-
pendent of the past, meaning that for 0 < u < s it is
not dependent on B

u

.
3. Paths are continuous. “B

t

, t � 0 are continuous
functions of t.
A Geometric Brownian Motion is a stochastic pro-

cess where the logarithm of the randomly varying
quantity follows a Brownian Motion”57.
Other popular models include the Bates model (an

extension of the Heston model, where in this case “the
di↵erence lies within the price process where a Pois-
son process is added”58) and the SVJJ model (“which
has simultaneous jumps in the asset and the volatil-
ity”59). The problem with these models is that they
are di�cult to calibrate. Indeed, the Bates model has
9 parameters, and the SVJJ model many more.
However, simpler models that are easier to calibrate

exist, such as the SABR model (where the volatility
mean reversion property does not exist “and is there-
fore only good for short expirations theoretically”60)
and the Stochastic Volatility Inspired model.
Stochastic volatility models also help when traders

try to hedge: indeed, they have to constantly change
the volatility assumption in order to make their prices
equivalent to those of the market, and this process of
restating the hedge ratios can become uncontrolled.
Because the distributions of assets are characterised

by fat tails and leptokurtosis, the variance should be
indeed modelled as a random variable. The concept

54E. Nilsson - Calibration of the Volatility Surface. 2008
55J. Gatheral - The volatility surface: a practitioner’s guide.

(2006)
56E. Nilsson - Calibration of the Volatility Surface. 2008
57http://www2.math.su.se/matstat/reports/seriec/

2011/rep7/report.pdf
58E. Nilsson - Calibration of the Volatility Surface. 2008
59Ibidem
60Ibidem

of volatility clustering (“large moves following large
moves and small moves following small moves”61) lets
us conclude that volatility is auto-correlated, and that
consequently there is mean reversion of volatility (an
exception being jump-di↵usion models62). Please re-
fer to Figure 6 to see that indeed large moves fol-
low other large moves and small moves follow previous
small moves.

Figure 6: S&P Log returns 1990 to 1999 63

Why is volatility mean reverting? Consider the dis-
tribution of the volatilities of Apple in 100 years. If
volatility was not mean revering, then the probabil-
ity of volatility of Apple being between 1% and 100%
would be low. Because we axiomatically believe that
volatility would indeed lie in the [1%;100%] range, we
can conclude that volatility is indeed mean reverting.
Following Wilmott as Gatheral does, suppose the

following stochastic di↵erential equations are satisfies
by the price S and variance v in the following ways64:

dS
t

= µ
t

S
t

dt+
p
v
t

S
t

dZ1 (13)

dv
t

= ↵(S
t

, v
t

, t)dt+ ⌘�(S
t

, v
t

, t)
p
v
t

dZ2 (14)

where µ
t

, ⌘ and ⇢ are respectively the deterministic
drift of stock price returns, the volatility of volatil-
ity (“vol of vol”) and the correlation between random
stock price returns and changes in v

t

, and where dZ1

and dZ2 are the two Wiener processes65. Gatheral de-
duces that the valuation equation is the following:
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where ↵ is the drift function and � is the volatility
function from the stochastic di↵erential equation for

61J. Gatheral - The volatility surface: a practitioner’s guide.
(2006)

62Ibidem
63http://www.cmap.polytechnique.fr/

rama/teaching/ea2003/gatheral.pdf
64J. Gatheral - The volatility surface: a practitioner’s guide.

(2006)
65Ibidem
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instantaneous variance66. It is always assumed that
the stochastic di↵erential equations for S and v are in
risk-neutral terms because the aim is to fit models to
option prices.

3.2 Local volatility

Local volatility is an average of instantaneous
volatilities. The local volatility function �

L

(S,t) is con-
sistent with the current prices of European options.
Therefore a local volatility model treats volatility as
a function of both the current asset price S

t

and of
time t. Such models are particularly of help when the
underlying’s volatility is a function mainly of the price
of the asset. They are very useful in the creation of
stochastic volatility models.
Since the “only source of randomness is the stock

price, local volatility models are easy to calibrate.
Also, they lead to complete markets where hedging
can be based only on the underlying asset”67. With
v
L

representing the local variance �2(S0, K, T), trans-
forming to Black-Scholes implied volatility space gives
the following final result:

vL =
@w
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1� y
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(16)

where w stands for the Black-Scholes implied total
variance w(S0,K, T ) = �2

B

S(S0,K, T )T , y for the log

strike ln
⇣

K

F

T

⌘

, F
T

is the forward price of the stock

and T is the time to maturity.
Local volatility is used especially with exotic options.

“There is no closed form formula for these contracts,
therefore Monte Carlo simulation has to be used, and
the preferable volatility is the local volatility”68.

3.2.1 Dupire’s equation

Given 69

dS
t

= rS
t

dt+ �(t, S
t

)S
t

dW
t

(17)

where r stands for the risk-free rate (assumed to be
bigger than 0), � for the deterministic function and
“W

t

for the Brownian motion with respect to a risk-
neutral probability measure”70.
Let us consider the price of a European call option

with T (time to maturity) bigger than 0 and K bigger
than 0. Following what the risk-neutral valuation says,
the formula is given by:

C
T,K

= e�rT

1
Z

K

(S �K)�
T,S

dS (18)

66Ibidem
67https://en.wikipedia.org/wiki/Local volatility
68E. Nilsson - Calibration of the Volatility Surface. 2008
69http://www2.math.uu.se/

maciej/courses/PDE for Finance/DF2012.pdf
70Ibidem

where � is the probability density function of S
t

. More-
over,
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(T, S)dS (21)

with the help of the Kolmogorov equation, we have the
following formula, which is Dupire’s formula:

�2
T,K

= 2
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+ rK @C
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K2 @2
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(22)

The right hand side of the previous equation can
be computed from the known option prices, strikes and
expirations. Consequently, Dupire’s equation can be
viewed as the local volatility function “regardless of
what kind of process (stochastic volatility for example)
actually governs the evolution of volatility”71.

3.2.2 Problems with Dupire’s equation

The equation firstly requires “continuous strikes and
maturities”72 (a way to partially solve the problem
would be therefore through interpolation). Moreover,
“numerical di↵erentiation is very unstable”73.
Lastly, another issue with the equation is that for

K being far in-the-money or out-of-the-money the nu-
merator or denominator may become extremely small,
leading to unreal local volatilities.

71J. Gatheral - The volatility surface: a practitioner’s guide.
(2006)

72https://people.maths.ox.ac.uk/reisinge/Students/
volaNotes.pdf

73Ibidem
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4 The dynamics of the implied
volatility

4.1 The risk-neutral drift formula

Assume the risk-neutral process followed by S:

dS

S
= [r

t

� q
t

]dt+ �dz (23)

where r
t

, q
t

, � and z are respectively the risk-free rate,
the dividend yield, the underlying’s volatility and the
Wiener process74. �

T

K(t, S) is the implied volatility
at time t with strike K and maturity T and V

T

K(t, S)
is the implied variance of the option, so that V

T

K(t, S)
= [�

T

K(t, S)]2. Suppose also that the process followed
by V

T

K is the following:
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where z
i

is the Wiener process of the volatility surface
and ✓

TKi

is the sensitivity of V
T

K to the Wiener pro-
cess, z

i

. “The instantaneous volatility �(t) is the limit
of the implied volatility of an at-the-money option as
its time to maturity approaches zero”75. Formally:
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T!t

�
TK

(t, S) = �(t) (25)

where F is the forward price of the underlying. If c(S,
V
T

K, K, T) is the price of a European call option, we
have the Black-Scholes-Merton formula:
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Using Ito’s lemma, Daglish, Hull and Suo arrive to
the following equation, which also provides the no-
arbitrage condition for the drift of the implied variance

74http://www-2.rotman.utoronto.ca/ hull/
downloadablepublications/DHSPaperdraft7.pdf

75Ibidem

with respect to its volatility:
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This equation provides the risk-neutral drift of the
implied variance in with respect to its volatility. The
last term is the drift that comes from the di↵erence
between the implied and instantaneous variances. The
second term comes from the “part of the uncertainty
about future volatility that is uncorrelated with the
asset price. The first term arises from the correlation
between the asset price and its volatility”76.

4.2 Special cases

1st case: V
TK

is a deterministic function of t, T and
K exclusively: the last equation can be rewritten as:

↵
TK

=
1

T � t
(V

TK

� �2) (30)

or also

�2 = �d[(T � t)V
TK

]

dt
(31)

which shows that � is a deterministic function of t and
T. The only model consistent with this first case is
Merton’s model. Also note that V

TK

= �2 and the
Black-Scholes-Merton model is obtained.
2nd case: V

TK

is independent of the underlying
price, S. In this case, ⇢

i

is equal to 0 and equation
(29) becomes the following:
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“Both ↵
TK

and ✓
TKi

must be independent of S. Be-
cause d1 and d2 depend on S we must have ✓

TKi

equal
to 0 for all i”77, which means that this second case
reduces to the first case.
3rd case: V

TK

is a deterministic function ot t, T and
K/S or K/F. Here:

V
TK

= G

✓

T, t,
K

F

◆

(33)

where G is a deterministic function. The spot instan-
taneous volatility is given by

�2 = G(t, t, 1) (34)

76Ibidem
77Ibidem
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which is a deterministic function of t and T. This third
case also reduces to the first case.
4th case: V

TK

is a deterministic function ot t, T,
S and K. Here the model reduces itself to Dupire’s
equation.
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5 Rules of thumb when creating
the volatility surface

The rules of thumb for constructing the volatility
surface fall in two categories. The first category is con-
cerned with how the volatility surface varies through-
out time. The usefulness is in the calculation of the
greeks. The second category concerns with the rela-
tionship between “the volatility smiles for di↵erent op-
tion maturities at a point in time”78. Their advantage
is that they help create a full volatility surface when
market prices are available for a limited amount of op-
tions.
Three di↵erent rules have been considered here: the

first two, the stick strike rule and the delta rule, belong
to the first category of the rules of thumb. The third
rule, also called the square root of time rule, falls into
the second category of rules of thumb when construct-
ing implied volatility surfaces. It consists in “filling in
the blanks when a complete volatility surface is being
produced”79.

5.1 Sticky strike rule

This rule assumes that the implied volatility of the
option does not depend on the underlying’s price.
Hence is assumes that the sensitivity of the option’s
price to the underlying’s price S is @c

@S

, where c is a
function of S, t and V

T

K (which stands for the im-
plied variance of the option). This assumption allows
the Black-Scholes formulas to calculate the delta, using
as volatility the option’s implied volatility. The same
can be claimed to be true for gamma80.
The implied volatility of the option does not change

for the entire life of the option. This is the basic ver-
sion of the sticky strike rule, where the only model
that is consistent with this type of version is the one
“where the volatilities of all options are the same and
constant”81.
A more complex version of the sticky rule is where

V
T

K is not dependent of S, but instead on other
stochastic variables. In this case, the only version of
the model that is consistent is “the model where the
instantaneous volatility of the asset price is a function
only of time”82. This is also called the Merton’s model.
All versions of the sticky strike rule are not consis-

tent with volatility smiles and skews. Indeed, if traders
price options and other derivatives using various im-
plied volatilities “and the volatilities are independent
of the asset price, there must be arbitrage opportuni-
ties”83.

78Ibidem
79Ibidem
80Ibidem
81Ibidem
82Ibidem
83Ibidem

Another version of the sticky delta rule used by
trades is that �

T

K(S, t) � �
T

F (S, t) is a function of
K/F and T - t. “Here it is the excess of the volatil-
ity over the at-the-money volatility, rather than the
volatility itself, which is assumed to be a determinis-
tic function of the moneyness variable, K/F”84. This
version of the sticky delta rule, also called the “rela-
tive sticky delta” model, allows the volatility level to
vary throughout time to expiration and the configura-
tion of the volatility term structure to vary, “but when
measured relative to the at-the-money volatility, the
volatility is dependent only on K/S and T - t”85.

5.2 Sticky delta rule

This rule assumes that the implied volatility of the
option depends on the variable K/S. Recall that the
delta of a European option in stochastic volatility mod-
els is the following:

� =
@c

@S
+

@c

@V
T

K

@V
T

K

@S
(35)

where the option price c is a function of S, t and
V
T

K. @c

@S

is the Black-Scholes delta with volatility
being equal to implied volatility. Secondly, @c

@V

T

K

is
positive, therefore it follows that “if V

T

K is a declining
(increasing) function of the strike price, it is an increas-
ing (declining) function of S and � is greater then (less
then) that given by Black-Scholes-Merton”86. Since for
equities V

T

K is a decreasing function of K, BS under-
stated the true delta. For FX options, instead, since
they show a volatility smile, then the Black-Scholes
“understates delta for low strike prices and overstates
it for high strike prices”87.
The most basic version of the stick delta rule is the

one where IV is assumed to be a deterministic function
of K/S and T - t. The only model that is consistent
with this version is Merton’s model where “instanta-
neous volatility of the asset price is a function only
of time”88. Moreover, the model is inconsistent with
volatility smiles and skews and for no arbitrage to ex-
ist, IVs must not depend on S and K.
A generalised version of the sticky delta rule is the

“generalised sticky delta model”, where the process
V
T

K is dependent on K/S and T - t.

5.3 Square root of time rule

This rule gives a relationship between volatilities of
options with various K and T at a given point in time.

84Ibidem
85Ibidem
86Ibidem
87Ibidem
88Ibidem
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A version of the rule is:

�
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(S, t)

�
TF

(S, t)
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)
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!

(36)

“where � is a function, F is the forward price at time
t of the underlying with a contract maturity of T”89.
An alternative is the following formula:

�
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(S, t)� �
TF

(S, t) = �

 

ln(K
F

)
p
T � t

!

(37)

If � does not change throughout time, then we are
in a “stationary square root of time model”. If it does
change throughout time, then we are in a “stochastic
square of root time model”. If we know “the volatil-
ity smile for options that mature at T* and the at-
the-money volatilities for other maturities”90 then the
complete volatility surface can indeed be computed. If
F* is the forward price of the underlying for a con-
tract maturing at T*, we can calculate the smile at
time T through the result that �

TK

(S, t)��
TF

(S, t) =

�
T⇤K⇤(S, t)��T⇤F⇤(S, t), whereK⇤ = F ⇤

�

K

F

�

q
(T⇤�t

T�t

)
.

If the volatility that is at-the-money is stochastic
and independent of the underlying price S, the sta-
tionary square root of time model is a specific “case
of the relative sticky strike model and the stochastic
square root of time model is a particular case of the
generalised sticky strike model”91.

89Ibidem
90Ibidem
91Ibidem
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6 Introduction to implied
volatility surfaces in a Black-
Scholes framework and more
complex pricing models

6.1 Problems with the Black-Scholes
model

The problem with the Black-Scholes implied volatil-
ity surface modeling is that the formula assumes that
volatility is constant. Hence, we should have a flat im-
plied volatility surface. Instead, as Figure 4 shows, the
implied volatility surface is far from flat. In this graph-
ical example we are looking at the implied volatility
surface of a call option, which becomes very high when
moneyness S/K becomes very large and time to matu-
rity T approaches 0. Therefore, this assumption of con-
stant volatility under the Black-Scholes-Merton model
is violated. “With one � input, the Black-Scholes-
Merton model can only match one market quote at
a specific date, strike and maturity”92. Thus, the im-
plied volatilities at various K and T are di↵erent, and
they do not define the term “return volatility”, but are
closely related to volatility.

Also, “a particular weighted average of all IV 2

across di↵erent moneyness is very close to the expected
return variance over the horizon of the option matu-
rity”93. Lastly, as stated previously, implied volatility
increases and reflects the time value of the option.

Moreover, returns are assumed to be lognormally
distributed, which empirically is not true, as stated
previously for FX, equity and index options. Skewness
and kurtosis are not constant either. Thus, “a good
option pricing model should account for return non-
normality and its stochastic (time-varying) feature”94.

Varying implementations of the Black-Scholes model
will lead to varying implied volatility surfaces. If these
implementations are correct expectations are that the
volatility surfaces will be similar in construction and
resemblance. Since single-stock options are usually
American, call and put options will generally give rise
to diverse implied volatility surfaces.

Even if the “Black-Scholes model is far from accu-
rate, the language of Black-Scholes is pervasive. Ev-
ery trading desk computes the Black-Scholes implied
volatility surface and the greeks they compute and use
are Black-Scholes greeks”95

92http://faculty.baruch.cuny.edu/lwu/9797/Lec8.pdf
93Ibidem
94Ibidem
95http://www.columbia.edu/ mh2078/BlackScholesCtsTime.pdf

6.2 The implied volatility surface and
the Black-Scholes model

It has to be remembered that an option value is char-
acterised by two components: the intrinsic value (Max
(S0 - K; 0) for calls and Max(K - S0; 0) for puts) and
the time value (which is the optionality that the holder
has to exercise the option throughout time. It is also
defined as the price of the option subtracted by the
option’s intrinsic value). The higher the volatility, the
higher the option’s value, whether call or put, because
of the fact that larger moves give the possibility for
higher profits but yield no extra risk (because options
give the right, but not the obligation, to buy or sell the
underlying asset).
If the Black-Scholes-Merton assumptions hold, then

we would have a flat implied volatility surface, as Fig-
ure 7 shows.

Figure 7: Flat volatility surface of Table 1

6.3 The implied volatility surface and
implied binomial trees

The idea behind binomial pricing is given by the im-
plied binomial tree, which helps understand the vari-
ations in implied volatility. This method is an adap-
tation of the Cox, Ross and Rubinstein method. The
following is satisfied by an implied binomial tree:
“1: correct reproduction of the volatility smile;
2: node transition probabilities lying in [0,1]-interval

only;
3: risk neutral branching process (forward price of

the underlying asset equals the conditional expected
value of itself) at each step”96

Conditions 2 and 3 guarantee also no-arbitrage. The
objective of using the implied binomial tree is to esti-
mate the implied probability distributions and hence
the local volatility surfaces. Addiotionally, the implied

96http://edoc.hu-berlin.de/series/sfb-649-papers/2008
-44/PDF/44.pdf
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binomial tree may calculate the future stock price dis-
tributions through the Black-Scholes implied volatility
surfaces, which are obtained from the European option
prices97.

6.3.1 How to construct the implied binomial
tree

Given

dS
t

S
t

= µ(S
t

, t)dt+ �(S
t

, t, ·)dW
t

(38)

we can di↵erentiate with respect to three di↵erent
volatilities:
1: instantaneous volatility: �(S

t

, t, ·)
2: implied volatility: �̂

t

(K,T )
3: local volatility: �

K,T

(S
t

, t)
Therefore the implied binomial tree can be con-

structed “as a discretisation of an instantaneous
volatility model”98:

dS
t

S
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= µ(S
t

, t)dt+ �(S
t

, t)dW
t

(39)

“After the construction of the implied binomial tree,
we are able to estimate a local volatility from underly-
ing stock prices and transition probabilities”99. Only
data that can be observed is used: therefore it is non-
parametric naturally.
Through the Derman and Kani algorithm we can

find the second moment of log(S
n+1) at S
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,
which also the following implied volatility formula dur-
ing �t:
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and
97Ibidem
98Ibidem
99Ibidem
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F is the forward price given by the following formula:

F
n

i = pn
i+1S

i+1
n+1 + (1� pn

i+1)S
i

n+1 (49)

and where S0
0 = 100 and �00 = 1.

6.4 The implied volatility surface and
Monte Carlo pricing

The Monte Carlo pricing method is a pricing method
used to calculate the value of options “with multi-
ple sources of uncertainty or with complicated fea-
tures”100. It relies on the risk-neutral valuation and
the price of the option is its discounted value. The
application of this method is to firstly generate a large
number of possible outcomes for the underlying price,
and then calculate the “payo↵” of the option for each
path.
The idea behind the Monte Carlo pricing method is

to calculate the price of the option given various inputs
and then to calculate the implied volatility of each re-
spective option through the given volatility model, be
it non-stochastic, stochastic or local. For future refer-
ence to the rest of this research paper, the Monte Carlo
pricing will use the Black-Scholes pricing method to
calculate the implied volatility for each given option
price.
The advantage of such method consists in the num-

ber of computations that can be computed and the
speed with which they can be attained. Moreover, the
user can decide how complex of a model he/she wants
the Monte Carlo one to be. However, assumptions
need to be reasonable, since the output relies totally
on these assumptions (inputs). Moreover, the Monte
Carlo method tends to underestimate the possibility of
market crashes.
The reasoning behind choosing the Black-Scholes

model for the Monte Carlo pricing is to compare it-
self to the Heston model, the SABR model and to the
given market implied volatility and option prices. This
way there can be a direct evaluation of which method is
more precise for both pricing options and representing
implied volatilities.

100https://en.wikipedia.org/wiki/Monte Carlo methods for
option pricing
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7 Construction methodologies
and parameterization for the
implied volatility surface

7.1 Volatility Surface based on local
stochastic volatility models

7.1.1 Heston model

The Heston model is the most well-known model of
all the stochastic volatility models. This model is so
popular mainly because it is relatively cheap in its com-
putations. Even if it must be remembered that the
Heston model is not realistic, if the inputs are cho-
sen accurately, through all stochastic volatility mod-
els we can construct similar shapes of implied volatil-
ity surface and have a rough valuation of non-vanilla
derivatives “in the sense that they are all models of
the joint process of the stock price and instantaneous
variance”101.
The main aspect of this model is “the existence of a

fast and easily implemented quasi-closed form solution
for European options”102.
The variance follows a Cox Ingersoll Ross (CIR) pro-

cess. The Heston model consists in choosing ↵(S, v
t

, t)
= ��(v
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� v̄) and �(S, v, t) = 1. We therefore have
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“where � is the speed of reversion of v
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to its long-term
mean v̄”103. Substituting the values of ↵(S, v
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of �(S, v, t), we have the following:
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“In Heston’s original paper, the price of risk is as-
sumed to be linear in the instantaneous variance v in
order to retain the form of the equation under the
transformation from the statistical (or real) measure
to the risk-neutral measure”104.
There are various solutions to the Heston process:
1: The Eurler discretisation of the variance process

is the following:

v
i+1 = v

i

� �(v
i

� v̄)�t+ ⌘
p
v
i

p
�tZ (54)

101J. Gatheral - The volatility surface: a practitioner’s guide.
(2006)

102Ibidem
103Ibidem
104Ibidem

with Z following a normal distribution with mean 0
and variance equal to 1. However this process may
give a negative variance as a result. Should this occur,
practitioners either adopt the absorbing assumption (if
v < 0 then v = 0), or the “reflecting” assumption (if v
< 0 then v = -v)105.
2: If the Milstein discretisation is used, then, by go-

ing to 2 orders in the Ito-Taylor expansion of v(t +
�t), the following equation consists in the discretisa-
tion of the variance process:

v
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4
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Through this new equation, “the frequency with which
the process goes negative is substantially reduced rel-
ative to the Euler case”106. It is not more computa-
tionally expensive to use the Milstein method, and it is
to be preferred to the Euler method because it results
fewer times in a negative variance.
3: using the Alfonsi (2005) discretization, we get the

following equation:

v
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4: Broadie and Kaya show “how to sample from the
exact transition law of the process”107:
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and
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7.1.2 The implied volatility surface based on
the Heston model

Let us firstly state that a model is useful if and only
if it returns the current prices of European options.
“That implies that we need to fit the parameters of our
model (whether stochastic or local volatility model)
to market implied volatilities”108. The best way to
calibrate a model is if a method for computing the
prices of options is fast, accurate and a function of
the model parameters. Heston is such a favourable

105Ibidem
106Ibidem
107Ibidem
108Ibidem

30



model. For local volatility models, numerical methods
are required.
Let us firstly define the Black-Scholes gamma:
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Gatheral explains with the following formula that �̄0
is the BS implied volatility today for the option with
strike K and expiration T:
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where E stands for the expectation value.
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This equation “gives us an approximate but surpris-
ingly accurate formula for local variance within the
Heston model (an extremely accurate approximation
when ⇢ = ± 1)”109.

7.1.3 The Heston-Nandi model

After having seen the derivation in the previous sec-
tion, we can observe that, if ⇢ = -1, the Heston process
is written as the following:

dx = �v

2
dt+

p
vdZ (62)

and
dv = ��(v � v̄)dt� ⌘

p
vdZ (63)

This choice of ⇢ = -1 was originally thought from He-
ston and Nandi “as the preference-free continuous time
limit of a discrete GARCH option pricing model pre-
viously introduced by them”110. With only one source
of randomness, there is the possibility to delete all
volatility risk through delta hedging with the under-
lying, and hence “there is no volatility risk premium
in this case”111.
Let us rewrite the stochastic di↵erential equation for

v as the following:

dv = ��0(v � v̄)dt� ⌘dx (64)

109Ibidem
110Ibidem
111Ibidem

with �0 = � + ⌘/2, v̄0 = v̄�/�0, we note that the local
variance will never be negative. From rewriting the
second-last equation of the previous section as
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we have that the local variance in the case ⇢ = -1 is
given by:
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“The whole expression must be bounded below by zero.
All stock prices above the critical stock price at which
the local variance reaches zero are unattainable”112.
where x

t

stands for Log S

S0
.

7.1.4 Comparing the Heston model to the
Heston-Nandi model

The following graphs show the a comparison of Eu-
ropean implied volatilities “from the application of the
Heston formula and from a numerical partial di↵er-
ential equation computation using the local volatilities
given by the approximate formula. For each expiration
T, the solid line is the numerical computation and the
dashed line is the approximate formula”113. We can
see that the stochastic and local volatility models price
European options pretty much identically. Therefore,
there exists a set of market parameters that permits to
distinguish the e↵ects of stochastic and local volatil-
ity assumptions on the valuation of multiple claims,
“confident that European options are almost identi-
cally priced under both sets of assumptions”114. So,
whenever there is a di↵erence in the results of the two
models, such di↵erence can reasonably be attributed to
the di↵erence in dynamical assumptions rather than to
the choice of parameters.

Of course, there will be more evident di↵erences
when we try to price exotic options, because of the
discontinuity of the payo↵s that they show.

In conclusion, “to value an option, it’s not enough
just to fit all the European option prices, we also
need to assume some specific dynamics for the under-
lying”115.

112Ibidem
113Ibidem
114Ibidem
115Ibidem
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Figure 8: Comparison of Heston and
Heston-Nandi models116

7.1.5 SABR model

The SABR model is also called the “stochastic alpha
beta rho” model. It has been developed by Hagan and
it has the following dynamics:

dF̂ = ↵̂F̂ �dW1 (67)

and
d↵̂ = v↵̂dW2 (68)

where the initial conditions are the following: F̂ (0) =
f , ↵̂(0) = ↵, and “the movements in the underlying
forward are correlated with the movements in the un-
derlying volatility”117:

dW1dW2 = ⇢dt (69)

whereas the Brownian motions are correlated (⇢ being
di↵erent from 0). The parameters are:

116Ibidem
117http://www.fam.tuwien.ac.at/

sgerhold/pub files/sem12/s sibetz nowak.pdf

“↵: the initial variance
v: the volatility of volatility
�: the exponent for the forward rate
⇢: the correlation between the two Brownian mo-

tions”118.
As stated previously in this research paper, volatility

is not mean reverting in the SABR model. Therefore
this model works only for short term maturities. “Nev-
ertheless the model has the virtue of having an exact
expression for the implied volatility smile in the short-
expiration limit ⌧ ! 0. The resulting functional form
can be used to fit observed short-dated implied volatil-
ities and the model parameters ↵, � and ⇢ thereby
extracted”119.
The SABR model is usually used to model any type

of forward rate. Being an extension to Black’s model,
the model does not derive option prices. “It instead
produces estimations of the implied volatility curve,
which are used as inputs in Black’s model”120 in order
to find the potential option prices.
There are 3 particular cases to consider with respect

to �:
1: when it equals 0, the resulting model is the

stochastic normal model;
2: when it equals 1, the resulting model is the

stochastic lognormal model;
3: when it equals 1

2 , the resulting model is the CIR
model.
An advantage of the SABR model is that it is a very

simple model which is “homogenous in f
t

and ↵
t

and
has an approximating direct formula for the price of a
European option”121. Its accuracy in the short-term to
find the implied volatility curve is outstanding, which
makes the SABR model e↵ective to manage the smile
risk “in markets where each asset only has a single
exercise date, including swaptions and caplet/floorlet
markets”122.
A problem, thus, of the SABR model is that it is not

able to fit the volatility surface on an asset which has
various European options at various maturities, such
as equity options. A partial solution to this problem
has been discovered by Hagan with the dynamic SABR
model. Even without this model, interpolation can be
used to create the volatility surface.
The advantage of the SABR model is that it o↵ers

analytical formulas, which are compliant to Black’s
model to calibrate the parameters for the implied
volatilities”123.
Let us firstly revise the Black model by observing its

pricing formulas:

CBS(f,K,�
B

, T ) = e�rT (fN(d1)�KN(d2)) (70)

118Ibidem
119Ibidem
120Ibidem
121Ibidem
122Ibidem
123Ibidem
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with
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the implied volatility of the SABR model is given by
the following formula:
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with z being equal to
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(73)

and x(z) being equal to

ln

⇢

p

1� 2⇢z + z2 + z � ⇢

1� ⇢

�

(74)

With ↵, � and v being finally found, the implied
volatility surface will be a function only of the forward
price and the strike price. “This is the result of the
fact that the SABR only produces implied volatilities
for single maturities, the dependence of �

B

on T is not
reflected in the notation �

B

(K, f)”124.
Why choosing SABR over other possible models?
1: The underlying model makes assumptions as to

the evolutions of the forward price and of the volatility,
resulting in robust implied distributions;
2: The inputs of the model relate directly to market

volatilities that can be observed in a simple Bloomberg
Terminal or even in Yahoo! Finance;
3: Because of the two previous advantages, non-

arbitrage restrictions, such as “the monotonicity of the
first derivative of call option value with respect to the
strike and the positivity of the second derivative, are
handy to control”125.

7.1.6 Local volatility with respect to implied
volatility in the SABR model

Using implied volatility to calculate the local volatil-
ity gives a more accurate result. Additionally, massive
amounts of time can be saved when computing the lo-
cal volatilities. As Rebonato stated, “Implied volatil-
ity is the wrong number to put into wrong formula to
obtain the correct price”126. Local volatility instead

124Ibidem
125http://kodu.ut.ee/ spartak/papers/sabr.pdf
126http://www.performancetrading.it/Documents/

KscComparison/Ksc Local.htm

is consistent. It is a function which gives, through
the Black-Scholes-Merton model, prices that are in line
with those of the market.127

Given the previous implied volatility formula for the
SABR model, let us recall the local volatility formula
obtained by Dupire. The local volatility given in terms
of implied volatility is the following128:
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where

d1,2 = d+,� =
ln(F (T )/K)± 1

2�
2
imp

(T � t)

�
imp

p
T � t

(76)

7.1.7 Dynamic SABR model

A disadvantage of the static SABR model appears
when data for options with diverse maturities is anal-
ysed. Indeed, large estimation errors can appear. “In
order to overcome this problem, the following dynamic
SABR model allows time dependency in some param-
eters”129.

dF
t

= ↵
t

F �
t

dW 1
t

, F0 = f̂ (77)

d↵
t

= v(t)↵
t

dW 2
t

,↵0 = ↵ (78)

with ⇢ also time dependent. The dynamic SABR
model results in the following equation to approximate
the implied volatility:

�
model

(K, f̂ , T ) =
1

w

✓

1 +A1(T )ln

✓

K

f̂

◆

+A2(T )ln
2
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K

f̂

◆

+B(T )T

◆ (79)

where

A1(T ) =
� � 1

2
+
⌘1(T )w

2
(80)

A2(T ) =
1� �

12
+

1� � � ⌘1(T )w

4

+
4v21 + 3(⌘22(T )� 3⌘21(T ))

24
w2 (81)

127Ibidem
128http://kodu.ut.ee/ spartak/papers/sabr.pdf
129https://www.researchgate.net/publication/257200550

Static and dynamic SABR stochastic volatility models
Calibration and option pricing using GPUs
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with

v21(T ) =
3

T 3

T

Z
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(T � t)2v2(t)dt (83)

v22(T ) =
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(T � t)tv2(t)dt (84)
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v(u)⇢(u)du

1
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dsdt (86)

If v = v0 and ⇢ = ⇢0, then v1(T ) = v2(T ) = v0,
⌘1(T ) = ⌘2(T ) = v0⇢0 and the dynamic SABR model
becomes the static SABR model.

7.1.8 SABR model with jumps

Even if adding jumps in volatility makes any model
more realistic, they do not add any value in terms of
shaping the volatility surface for very short times to
maturity130. Nevertheless, it is important to see how
Medveded and Scaillet have derived their formula for
short-dated implied volatilities.
Let us firstly consider the stochastic volatility model

with jumps:

dS
t

S
t

= �
t

dZ1 + J(�
t

)dq
t

(87)

and
d�

t

= a(�
t

)dt+ b(�
t

)dZ2 (88)

“where the term dq is a standard Poisson process with
intensity �

J

(�
t

) and J(�
t

) is a (�1,1)-valued random
variable with density f samples at each jump”131. The
jump compensator µ

J

is equal to:

�
J

1
Z

�1

f(x)dx (89)

130J. Gatheral - The volatility surface: a practitioner’s guide.
(2006)

131Ibidem

The short-dated implied volatility is given by the
following:
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“where µ
J

= �
J

1
R

0
xf(x)dx, � = �

J

1
R

0
xf(x)dx are

respectively the positive part of the jump compen-
sator and the probability of an upwards jump and
g(z) = N(�z)

N

0(z) ; h(z) =
1

N

0(z)”
132.

Every single term that has a subscript J is jump-
related, and disappears in the absence of jumps.

7.1.9 Local stochastic volatility model

The local stochastic volatility model is a hybrid of
various local and stochastic volatility models. Here we
represent the example of a hybrid Heston model with
a local volatility model (first of two examples), with
the following dynamics:

dfLSV (t) = �(fLSV (t), t)
p

v(t)fLSV dW1(t) (93)

dv(t) = k(✓ � v(t))dt+ epsilon
p

v(t)dW2(t) (94)

where f stands for the forward price at time t and v
for the variance.
To calibrate the model, firstly calibrate the stochas-

tic volatility part, and then adopt a local stochas-
tic volatility correction. This 2-step process is valid
because of “the observation that the forward skew
dynamics in stochastic volatility setting are mainly
preserved under the local stochastic volatility correc-
tion”133

Let us firstly compute the conditional expected vari-
ance v(t) given fLSV (t):

E[v(t)|fLSV (t) = f ] =

1
R

0
vp(t, f, v)dv

1
R

0
p(t, f, v)dv

(95)

132Ibidem
133http://arxiv.org/pdf/1107.1834.pdf
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The second step is to adjust � following Gyongy’s
identity set up for the local volatilities outputted by
the local stochastic volatility function:

(�LSV

LV

)2(f, t) = �2(f, t)E[v(t)|fLSV (t) = f ]

= (�Market

LV

)2(f, t) (96)

Lastly, the two steps must be repeated until �(f, t)
has converged (usually 1 or two trials are more than
su�cient).
The second way to compute local volatilities is

through local volatility ratios through the following
procedure:
1: Use Gyongy’s formula to calculate the local

volatilities of the local stochastic volatility and stochas-
tic volatility models:

(�LSV

LV

)2(f, t) = �2(f, t)E[v(t)|fLSV (t) = f ]

= (�Market

LV

)2(f, t) (97)

and

(�SV

LV

)2(x, t) = E[v(t)|fSV (t) = x] (98)

2: Take the ratio of the two volatilities calculated in
1:

�(t, f) =
�Market

LV

(f, t)

�
L

V SV (x, t)

s

E[v(t)|fSV (t) = x]

E[v(t)|fLSV (t) = f ]

⇡ usingx = H(f, t) ⇡ �Market

LV

(f, t)

�SV

LV

(H(f, t), t)
(99)

7.2 Volatility Surface based on Levy
processes

7.2.1 Implied Levy volatility

The idea behind using a model based on Levy pro-
cesses is to “better handle short term skews (observed
especially in FX and commodity markets)”134. When
we observe models with continuous paths like a dif-
fusion model, the price behaves like a Brownian mo-
tion and the probability that the price moves greatly
over very short periods is very small. Hence in these
specific models the prices of small T out-of-the-money
options are lower than those observed in the real mar-
kets. However, if there is the possibility for the price
to jump, then the probability of high volatility in the
price of the underlying in the very short term is non-
negligible.
There are two categories of Levy processes:

134C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

1: jump di↵usion processes: with jumps being eval-
uated as rare events, “in any given finite interval there
are only finite many jumps;
2: infinite activity Levy processes: in any finite time

interval there are infinitely many jumps”135.
Options literature confirms that there is presence of

jumps in the S&P options, for example136.
Levy processes manage to show the volatility smile

for a single time to maturity very well, but when we are
talking in terms of various maturities, the calibration
process is less precise. “To calibrate a jump-di↵usion
model to options of several maturities at the same time,
the model must have a su�cient number of degrees of
freedom to reproduce di↵erent term structures”137.
The first “implied Levy volatilities” have been intro-

duced through the implied Levy space volatility and
the implied Levy time volatility where, instead of fol-
lowing a normal distribution, the distribution follows
a process more similar to empirical observations.
This is the model being followed:

S(t) = S0exp[(r � q � w)t+ �X(t)] (100)

where � > 0, and r, q, w and X = (X(t), t > 0)
are respectively the risk-free rate, the dividend yield,
a term that is put in order to adjust the equation to
being dynamic risk-neutral and a stochastic process
that begins at zero and that “has stationary and inde-
pendent increments distributed according to the newly
selected distribution”138.
Let us see as an example the implied Levy time

volatility: we firstly start from a similar Levy process
and we consider the following dynamics:

S(t) = S0exp[(r � q � w�2)t+X(t)] (101)

and

w = log(�(�i)) (102)

“The volatility parameter � = �(K,T ) needed to
match the model price with a given market price is
called the implied Levy space volatility”139.

135Ibidem
136A. Medvedev and O. Scaillet -

Approximation and calibration of short-term implied
volatilities under jump-di↵usion stochastic
volatility.
http://www.hec.unige.ch/www/hec/m1/
RecherchePublications/CahiersRecherche/2006/simple
Text/0/content files/file8/2006.
01.01.01.01.01.01.01.01.01.01.01.01.pdf, 2006.

137C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

138Ibidem
139http://cermics.enpc.fr/cnf/Guillaume.pdf
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7.2.2 Bates (SVJ) model

In the Bates model the implied volatilities for short
maturities can be assumed to have been potentially af-
fected by the presence of jumps, while “the smile for
longer maturities and the term structure of implied
volatility is taken into account using the stochastic
volatility process”140.
The idea behind the “Stochastic Volatility plus

Jumps in the underlying only” model is that there is
a combination between the stock price jumps and the
stochastic volatility.
Using the Merton-style lognormally distributed

jump in the Heston process we have the following141:

dS = µSdt+
p
vSdZ1 + (e↵+�✏ � 1)Sdq (103)

dv = ��(v � v̄)dt+ ⌘
p
vdZ2 (104)

with dZ1 dZ2 = ⇢dt, ✏ ⇠ N(0,1) and the following
poisson process: dq = 0 with probability 1 - �

J

dt and
dq = 1 with probability �

J

dt, where �
J

is the hazard
rate / jump intensity. By re-substituting in Gatheral’s
valuation equation, “the characteristic function for this
process is just the product of Heston and jump char-
acteristic functions”142:
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where with the following two equations we get respec-
tively the implied volatilities and the at-the-money
volatility skew at any given expiration:

140C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

141J. Gatheral - The volatility surface: a practitioner’s guide.
(2006)

142Ibidem
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where the first of these last two equations gives
the “relationship between the implied volatility sur-
face and the characteristic function of the underlying
stock process”143.
One problem with the SVJ model is that because

of the absence of correlation between the volatility
process and the jump, after the jump has occurred
the volatility will stay unchanged. Empirically and
intuitively, “after a large move in the underlying,
implied volatilities always increase substantially (i.e.,
they jump)”144.

7.2.3 SVJJ model

To account for the unrealistic fact that instanta-
neous volatility would not jump after the stock price
jumps, the SVJJ model has been adapted to such situ-
ation. Indeed, let us not forget that large moves follow
large move and vice-versa. Hence, it makes sense intu-
itively and empirically that after a stock jump there is
also a volatility jump.
The idea behind this model is that “jumps in the

stock price are accompanied by a jump in the instan-
taneous volatility”145. The characteristic function in
this case is the following:

�
T

(u) = exp
�

Ĉ(u, T )v̄ + D̂(u, T )v
 

(116)

with C(u,T) and D(u,T) being respectively:

Ĉ(u, T ) = C(u, T ) + �
J

T [eiu↵�u
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2
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and

D̂(u, T ) = D(u, T ) (118)

143Ibidem
144Ibidem
145Ibidem
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where
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Whenever �
v

goes towards 0, I(u,T) approaches 1
and we are back to the SVJ model. Moreover, when T
approaches 0, I(u,T) approaches 1 and in this case the
SVJJ characteristic function is the same as the SVJ
one.
Gatheral shows in his book that the term structure

of volatility skew corresponds to the intuition. Insert-
ing volatility jumps does not contribute at all to ex-
plain the presence of potential very short-dated volatil-
ity skews. But when compared to stochastic volatil-
ity and SVJ models, “it does reduce the volatility of
volatility required to fit longer-dated volatility skews
even if that comes at the expense of a seemingly even
more unreasonable estimate for the average stock price
jump”146.
Unfortunately Gatheral also shows that the SVJJ

model has many more parameters and that it is harder
to fit to observable market option prices. “The SVJ
model thus emerges as a clear winner in comparison
between Heston, SVJ and SVJJ models”147.

7.3 Volatility Surface based on models
for the dynamics of implied volatil-
ity

7.3.1 Carr and Wu approach (dynamic im-
plied volatility)

The Carr Wu approach assumes that there is a model
in between stochastic instantaneous volatility models
and market models of implied volatilities. For the first
type of these two models, the starting point is that S0

is known and the level of financing is known too. More-
over, there are assumptions about the stock price and
instantaneous return volatility dynamic. The implica-
tions are the level and shape of the implied volatility
surface. In terms of calibration, “parameters governing
the price/volatility dynamics and the initial volatility
level can be calibrated to a finite number of option
observations. The calibrated model can be used to
construct the whole implied volatility surface”148. The

146Ibidem
147Ibidem
148Carr and Wu - A new simple approach for constructing

implied volatility surfaces. (2011)

disadvantages of such model are that the initial instan-
taneous volatility level cannot be observed and that it
is a di�cult model to calibrate.

Concerning the market models of implied volatili-
ties, the starting situation is the following: “known
initial option implied volatility level (on a single op-
tion, a curve, or over the whole surface)”149. In the
assumptions we have the martingale component of the
implied volatility dynamics, and the implications are
the following: risk exposures and the drift on the im-
plied volatility dynamics. The drawback is the follow-
ing: “given an entire initial implied volatility surface,
one is not free to choose any martingale component of
dynamics”150.

The Carr and Wu approach comes in between these
two approaches with the following givens:

1: Starting point: S0 and level of financing.

2: Assumptions: “Stock price and option implied
volatility dynamics (both drift and di↵usion), instead
of instantaneous return volatility dynamics”151.

3: Implications: the level of the implied volatility
surface at a given date.

4: Calibration: “Parameters governing the im-
plied volatility dynamics and the initial instantaneous
volatility level can be calibrated to a finite number of
vanilla option implied volatility observations”152. The
model can eventually be adopted to build the entire
implied volatility surface. The calibration is carried
“directly from implied volatility dynamics to implied
volatility surface. It is 100 times faster than calibrat-
ing standard option pricing models of similar complex-
ities”153.

There is the assumption of rates being equal to zero.
Moreover, dS

t

S

t

= s
t

dW
t

, where s
t

is left unspecified.
The specific option’s implied volatility, called I

t

(K,T ),
follow the following process:

dI
t

(K,T ) = µ
t

dt+ w
t

dZ
t

(121)

for all K > 0 and T > t and where µ
t

is the drift and w
t

is the volatility of volatility and can both depend on K,
T and I(K,T). There is also the assumption that “one
Brownian motion Z

t

drives the whole implied volatility
surface”154. There is lastly the requirement “that no
dynamic arbitrage be allowed between any option at
(K,T) and a basis option at (K0, T0) and the stock”155.

With P
t

(K,T ) being the option value, the funda-
mental partial di↵erential equation becomes the fol-

149Ibidem
150Ibidem
151Ibidem
152Ibidem
153Ibidem
154Ibidem
155Ibidem
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lowing:
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where the partial di↵erential equation defined relation-
ship that is linear between the theta (B

t

) of the op-
tion and its vega (B

�

), dollar gamma (S
t

2B
SS

), dollar
vanna (S

t

B
S�

) and volga (B
��

).
This class of implied volatility surfaces defined by

the partial di↵erential equation has been redefined as
the “Vega-Gamma-Vanna-Volga” model by Carr and
Wu.
By plugging the partial derivatives of the BS for-

mula, the partial di↵erential equation reduces to the
following quadratic equation:
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“If (µ

t

, w
t

) do not depend on I
t

(K,T ), we can solve
the whole implied volatility surface as the solution to
a quadratic equation”156.
The two have gone further to develop two variance

dynamics: the “square root implied variance” one and
the “log-normal implied variance” one. In the first one
the implied volatility surface is represented in terms of

the standardised moneyness
ln

K

S

t

+ 1
2 I

2
⌧

I

p
⌧

and the term ⌧
= T - t.
The square-root implied variance dynamics formula

is the following:

dI2
t

= k[✓ � I2
t

]dt+ 2we�⌘(T�t)I
t

dZ
t

(124)

and the implied volatility surface v(z, ⌧) solves the fol-
lowing quadratic equation:

(1 + k⌧)v2
t

(z, ⌧)� (w2e�2⌘⌧ ⌧3/2z)v
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e�⌘⌧
p
⌧z + w2e�2⌘⌧ ⌧z2
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(125)

where, in the limit ⌧ = 0, v2
t

(z, 0) = s2
t

and in the
limit ⌧ = 1, v2

t

(z,1) = ✓ and where the at-the-money
implied variance (hence when z = 0) term structure is

the following: a2
t

(⌧) = (k✓�w

2
e

�2⌘⌧ )⌧+s

2
t

(1+k⌧) .

With the log-normal implied variance dynamics, in-
stead, we have the following equation:

dI2
t

(K,T ) = k[✓ � I2
t

(K,T )]dt

+ 2we�⌘(T�t)I2
t

(K,T )dZ
t

(126)

where the implied variance surface (Î2
t

(k, ⌧)) solves the
following quadratic equation:

156Ibidem
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where in the limit of ⌧ = 0, (Î2
t

(k, ⌧)) = w2k2 +

2⇢s
t

wk + s2
t

, in the limit of ⌧ = 1, (Î2
t

(k, ⌧)) = ✓
and where the at-the-money implied variance (there-
fore when z = 0) term structure is the following:
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The two models have six time-varying coe�cient and
have the advantage that “given time-t values on the
six coe�cients, the whole implied volatility surface at
time t can be solved as the solution to quadratic equa-
tions”157.

Lastly, according to Caar and Wu, their model is
about 100 times faster and much more accurate than
the Heston model. They have stated that options
traders prefer to use the Black-Scholes-Merton implied
volatilities. Indeed, “directly modeling implied volatil-
ity dynamics and generating direct implications on
the implied volatility surface shape are both attrac-
tive ideas”158. What happens is that market models
of implied volatilities try to model the implied volatil-
ity dynamics while taking the implied volatility surface
as given. The implied volatility surface “can put severe
constraints on what the former can be, or vice versa.
We directly model the implied volatility dynamics, and
we derive the dynamic-no-arbitrage implication on the
shape of the implied volatility surface. The two are
guaranteed to be consistent. Market deviations from
model implications can serve as relative trading oppor-
tunities”159.

Questions that arise with this method are the fol-
lowing:

1: How can we guarantee static no-arbitrage across
di↵erent K and T and among many options?

2: How can we “link the implied volatility dynamics
to the dynamics of the instantaneous return variance
rate?

3: How can we accommodate multiple factors and
discontinuous dynamics in both prices and implied
volatilities?”160

157Ibidem
158Ibidem
159Ibidem
160Ibidem
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7.4 Volatility Surface based on para-
metric representations

7.4.1 Polynomial parametrisation

This type of representation, suggested by Dumas,
Fleming and Whaley161, proposes the implied volatil-
ity surface as a function of the moneyness M ,
ln( F

K

/
p
T ), volatility would be described by the fol-

lowing equation:

�(M,T ) = b1 + b2M + b3M
2 + b4T + b5MT (128)

It must be stated that this model was thought
mainly for the commodities markets (in particular, for
the Oil markets), and the problem with this model
is that is gives an “average” shape since it assumes
that “the quadratic function of volatility versus mon-
eyness is the same across all maturities”162. Indeed,
“the increasing power of the polynomial volatility func-
tion does not o↵er a solution, since this volatility func-
tion will still be the same for all maturities”163. In
order to solve these issues, semi parametric represen-
tations have been analysed further by Borovkova and
Permana164, where they have approximated the im-
plied volatility surface by a “quadratic function which
has time dependent coe�cients”165. However, such
parametrisations have various disadvantages:
1: They are not able to guarantee an arbitrage-free

volatility surface;
2: The dynamics of the surface cannot realistically

be observed.
Since these specific parametrisations are mainly use-

ful in Oil markets and since the empirical part of this
research paper will focus on the equity markets, there
will be no further analysis on them.

7.4.2 Stochastic volatility inspired parametri-
sation

Stochastic volatility inspired parametrisation is ap-
plicable mainly in both the equity and the energy
markets, and can be used along conditions for the
“no vertical and horizontal spread arbitrages”166. The
main characteristics of the stochastic volatility inspired
parametrisation are the following:
1: “Each time slice of the implied volatility sur-

face is fitted separately”167, resulting in an hyperbola

161B. Dumas, J. Fleming and R.E. Whaley - Implied volatility
functions: Empirical tests. The Journal of Finance. (1998)

162C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

163Ibidem
164S. Borovkova and F. J. Permana - Implied volatility in oil

markets. Computational Statistics and Data Analysis.
(2009)
165C. Humescu - Implied volatility surface: construction

methodologies and characteristics. (2011)
166Ibidem
167Ibidem

that gives the “correct asymptotic representation of
the variance when log-strike tends to plus or minus
infinity”168

2: Constraints are imposed that guarantee no verti-
cal and no horizontal arbitrage opportunities169

The following equation results from the stochastic
volatility inspired parametrisation:

�2[x] , v({m, s, a, b, ⇢}, x)

= a+ b
⇣

⇢(x�m) +
p

(kx�m)2 + s2
⌘

(129)

“where a, b, ⇢, s are parameters which are dependent
on the time slice and x = ln (K/F)”170.
One problem with such parametrisation is that it

might present arbitrage situations at times. However,
advantages include: quick computations, good approx-
imations for implied volatilities for deep in-the-money
and deep out-of-the-money options. And the stochas-
tic volatility inspired fit for the equity markets is better
than that for energy markets, “for which Deryabin171

reported an error of maximum 4-5% for front year and
respectively 1-2% for long maturities”172.
The original quasi explicit calibration procedure is

based on “matching input data {�MKT

i

}
i=1...M 0”173,

and becomes an optimisation problem:
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If we set the focus on total variance V = vT, the
stochastic volatility inspired model transforms to the
following equation:

V (y) = ↵T + �y + �
p

y2 � 1 (131)

where y = x�m

s

, � = bsT , � = ⇢bsT , ↵ = aT .
With the notation V̄
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]2T , “for a given T,
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the solution of the 3-dimensional problem”174:
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168Ibidem
169Ibidem
170Ibidem
171M.V. Deryabin - Implied volatility surface reconstruction for

energy markets: spot price modeling versus surface
parametrisation. (2011)

172C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

173Ibidem
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with the following domain being valid:
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Given the solution {�⇤, �⇤,↵⇤}, we can find the cor-
responding values {a⇤, b⇤ ⇢⇤} and solve directly the 2-
dimensional optimisation problem:

min
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The idea behind this 2-parameter optimisation
added to the first 3-parameter optimisation is that the
“procedure is much less sensitive to the choice of initial
guess, and the resulting parameter is more reliable and
stable”175. Knowing that the SVI is performed “se-
quentially, expiry by expiry”176, enhanced procedures
exist which satisfy the no-calendar arbitrage and the
no-strike arbitrage simultaneously.

7.4.3 Entropy-based parametrisation

Entropic calibrations, used for thorough risk-neutral
price distributions, implied volatility functions and
option pricing functions is “an algorithm that yields
arbitrage-free di↵usion process by minimising the rela-
tive entropy distance to a prior di↵usion”177, and it is
used to interpolate between implied volatilities of the
options that are being traded.
Entropy maximisation (which aims to build the risk-

neutral implied probability density function for the end
price of the asset) will not present over fitting prob-
lems, is flexible and “can be applied to a wider range
of calibration situations”178.
Most entropy calibrations in financial modeling “use

the logarithmic measure of Shannon and Wiener”179.
A problem with such types of paremetrizations is that
if it only uses prices of vanilla options to apply the en-
tropy maximisation, then the density function will be
exponential. However, they do respect the power laws
of the Zipf-Mandelbrot type. An example of such en-
tropies that respects the Zipf-Mandelbrot laws is Renyi
entropy180, which is used to get interpolations in an

175Ibidem
176Ibidem
177Ibidem
178Ibidem
179Ibidem
180D.C. Brody, I.R.C. Buckley and I.C. Constantinou - Option

price calibration from Renyi entropy. (2007)

arbitrage-free environment. The main idea behind the
interpolations is that “there is a one-to-one correspon-
dence between the pricing formula for vanilla options
and the associated gamma”181. Therefore, if we have
the option gamma we can come back to the equivalent
option pricing equation.
Given the following strikes, K

j

, j = 1, ...,M , the
density function of the Renyi entropy is the following:
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where ↵,�,�0, ...,�M “are calibrated by matching
the input prices computed using the previous density
function”182.
Humescu shows that for call options, we have to fol-

low the following condition:

S̄0 �K
m

� ↵� 1

↵

j�1
X

m=1

Y
m

[X
m

(x)]
↵

↵�1

✓

x�K
m

� ↵� 1

2↵� 1
Y
m

X
m

(x)

◆

= |x=K

j+1

x=K

j

CMKT

j

(135)
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and imposing a normalisation condition:
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The advantages of such method are various:
1: It is easy to use for calibration of binary options

and variance swaps
2: “The procedure allows for accurate recovery of

tail distribution of the underlying asset implied by the
prices of the derivatives”183.
A disadvantage is that the inputs must be coming

from arbitrage-free situations, otherwise the algorithm
will not work184.
181C. Humescu - Implied volatility surface: construction

methodologies and characteristics. (2011)
182Ibidem
183Ibidem
184Ibidem
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7.5 Volatility Surface based on
nonparametric representations,
smoothing and interpolation:
arbitrage-free algorithms

Of essential importance is that the data is interpo-
lated is arbitrage-free, otherwise the algorithms will
not work at all. Kahale185 “proposes an interpola-
tion procedure based on piecewise convex polynomi-
als, mimicking the Black-Scholes-Merton formula”186,
which results in an arbitrage-free call price and hence
in an arbitrage-free volatility smile. Secondly, the total
variance is interpolated throughout the strikes in a lin-
ear way. “Cubic B-splines interpolation was employed
by Wang, Yin and Qi187, with interpolation performed
on option prices”188.
On the other hand, Benko, Fengler, Hardle and

Kopa189 “suggest to directly smooth implied volatil-
ity parametrisation by means of constrained local
quadratic polynomials”190.
If we have M expiries {T

j

} and N strikes {x
i

} and if
market data is {�MKT

i

(T
j

)}, then various approaches
have been adopted, but for the purpose of this research
paper, let us only consider the case where “each ma-
turity is treated separately”191: for this case there has
to be a minimisation of the following variables:
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where K is the kernel function. An example is the
Epanechnikov model:

K(u) = 0.75(1 � u2)1[|u|  1] (140)

“with 1(A) denoting the indicator function for a set
A and h is the bandwidth which governs the trade-o↵
between bias and variance”192.
There are other approaches193 which are based on

cubic splines smoothing of option prices. This implies

185N. Kahale - An arbitrage-free interpolation of volatilities.
(2004)

186C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

187Y. Wang, H. Yin and L.Qi - No-arbitrage interpolation of
the option price function and its reformulation. (2004)

188C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

189M. Benko, M.R. Fengler, W.K. Hardle, and M. Kopa - On
extracting information implied in options. (2007)

190C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

191Ibidem
192Ibidem
193M.R. Fengler - Option data and modeling BSM implied

volatility. (2010)

(and is an advantage) that the input data must not
necessarily have be free of arbitrage. “It employs cu-
bic splines, with constraints specifically added to the
minimisation problem in order to ensure that there is
no arbitrage”194. A problem with these approaches is
that the pricing function is not considered in the poly-
nomials, and hence the call price is approximated.
Laurini 195 adopts “constrained smoothing B-

splines. This approach permits to impose monotonic-
ity and convexity in the smoothed curve. It allows to
impose directly the shape restriction of no-arbitrage in
the format of the curve”196. Problems with such mod-
els are that they need the “knots to be placed on a
rectangular grid”197.
Thin-spline representations of implied volatility sur-

faces have been accounted for as well by Brecher198,
where they have been used to get a pre-smoothed sur-
face “that will be eventually used as a starting point
for building a local volatility surface”199.
Marunh200 builds the volatility surface through

generic volatility parametrisation for each expiry,
“with no-arbitrage conditions in space and time be-
ing added as constraints, while a regularisation to the
calibrating functional based on the di↵erence between
market implied volatilities and, respectively, volatili-
ties given by parametrisation. [...] The resulting op-
timisation problem has a lot of sparsity/structure”201

and this helps to obtain a great fit in an amount of
time lower than a second.

7.6 The volatility surface based on a
simpler numerical methods: the
price-wise linear method

This method is relatively easy and straightforward
to implement since it involves the following formula to
find the option prices:

y =
y
i

(X
i+1 � x) + y

i+1(x� x
i

)

x
i+1 � x

i

(141)

where x’s are strike prices and y’s are the option
prices.

194C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

195M. Laurini - Imposing no-arbitrage conditions in implied
volatility surfaces using constrained smoothing splines.
(2007)

196C. Humescu - Implied volatility surface: construction
methodologies and characteristics. (2011)

197Ibidem
198D. Brecher - Pushing the limits of local volatility in option

pricing. (2006)
199C. Humescu - Implied volatility surface: construction

methodologies and characteristics. (2011)
200J. Maruhn - On-the-fly bid/ask-vol fitting with applications

in model calibration. (2010)
201C. Humescu - Implied volatility surface: construction

methodologies and characteristics. (2011)
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“It is also the only method that fits the original
data exactly”202. Such model is used when the trader
does not want to calibrate the model with respect to
the market prices of swaptions with the prices that
the trader already has. Indeed, not only “these prices
are not always considered to be the best match of the
market prices”203, but also also “there might not exist
prices for the strikes and maturities the trader is look-
ing for”204. A problem with such interpolation method
is, however, that it may produce arbitrage situations
in the interpolated volatilities, “even if there is none
in the original data”205.

202D. Kohlberg - The interest volatility surface. (2011)
203Ibidem
204Ibidem
205Ibidem
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8 Attempts at capturing the dy-
namics of the implied volatil-
ity surface - 1

Since “local variance is a conditional expectation of
instantaneous variance, we can estimate local volatili-
ties generated by a given stochastic volatility model;
implied volatilities then follow. Given a stochastic
volatility model, we can then approximate the shape
of the implied volatility surface”206.

8.1 Introduction to the first empirical
application

The first empirical section of this research paper
will analyse how the Heston, SABR and Monte Carlo
model are used to price options and whether the mod-
els’ prices are in line with the market prices. For the
purpose of this research paper, it must be underlined
that the following factors have been used in order to
calculate the Heston, SABR and Monte Carlo implied
volatilities on the software MATLAB 2016207:
1: Implied volatilities, strike prices and maturities

gotten form Yahoo! Finance in the “Option Chain”
section of the website of various stocks;
2: Data obtained exclusively for high volumes of

open interest exists for the options being traded in the
market;
3: Constant strikes throughout the evolution of the

spot price, so as to always compare the same options
implied volatilities surfaces and prices;
4: Average of the implied volatilities of the two pre-

vious underlying moves in the same direction and with
similar magnitude; such implied volatilities have been
used to calibrate the Heston and SABR model as ini-
tial volatilities. The idea is to transform these aver-
age implied volatilities in order to have new implied
volatilities which, thanks to the Heston and SABR
model, take into account the fact the volatility would
be stochastic;
5: Interpolation to find missing volatilities for op-

tions (for given maturities and strikes) by using the
sum of di↵erences for volatilities at the extremes of a
curve for the same maturity or an average for volatili-
ties in between strike prices;

206J. Gatheral - The volatility surface: a practitioner’s guide.
(2006)

207Heston and SABR MATLAB 2016 codes obtained respec-
tively at the

following websites:
1] http://it.mathworks.com/matlabcentral/fileexchange/

29446-heston-model-calibration-and-simulation,
2] http://fr.mathworks.com/help/fininst/calibrating-the-

sabr-model.html?refresh=true
Monte Carlo and Black-Scholes VBAs obtained by HEC Paris

Professor Olivier Bossard

6: For the Monte Carlo implied volatilities found, if
abnormal values are a result of the calculations, then
the average of the closest implied volatilities for the
same strike are calculated. If the abnormal value is
found at one of the extremes of points of the surface
(for example for the first time to maturity implied
volatility with strike of $X), then the di↵erence be-
tween the two next closest implied volatilities with the
same strike is taken and added to the implied volatility
value calculated for the option with the closest time to
maturity (given the same strike $X);
7: Risk-free rate of 0.25% (which is the current yield

of 10-year German Bunds);
8: Dividend yields according to what is found on the

respective Yahoo! Finance pages of each company;
9: T (time to maturity of the options) between 1

month and 2 years;
10: 10000 iterations to calculate the Heston implied

volatility;
11: For the Heston model, v = 0.5 kappa = 0.5,

theta = 0.5, volatility of volatility = 0.05, rho = 0.5,
with the respective lower and upper bounds of [0,1],
[0,100], [0,1], [0,0.5], [-0.9,0.9];
12: 100000 simulations for the Monte Carlo process;
13: Assumption that the underlying has moved

without jumps throughout the specific trading day,
since we are testing models which do not account for
jumps.
The MATLAB 2016 codes used in order to calibrate

the Heston and SABR models and the VBA code used
for the Monte Carlo process are respectively in Ap-
pendix A, Appendix B and Appendix C:
The way the Heston, SABR and Monte Carlo will be

compared to the market implied volatilities and prices
is through analysing how they price options and es-
timate implied volatilities given various swings in the
market prices of the underlying of the specific options.
The “swings” in the daily underlying price movement
will be divided in the following categories:
A: -5.00% to -1.00%;
B: -1.00% to 0.00%;
C: 0.00% to +1.00%;
D: +1.00% to +5.00%;
We do not include daily absolute changes in percent-

age of the underlying price of more than 5% so as to
exclude jumps, since the Heston and SABR model do
not account for jumps. Moreover, there has been the
decision to di↵erentiate between a underlying move-
ment of less than 1% and of more than 1% because in
“normal times” the stock price will move by less than
1%, while in specific times or for specific catalysts the
underlying price might show more nervous movement,
depreciating or appreciating by more than 1%.
Lastly, it must be stated that the comparison of

the Heston implied volatility and the actual (Black Sc-
holes) implied volatility retrieved by Yahoo! Finance
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is carried out on a benchmark stock, which in this re-
search paper it will be Citigroup. The test will be also
carried out on “comparable companies” of Citigroup (it
will be explained in detail afterwards why each com-
pany is a comparable of Citigroup): Goldman Sachs,
Zions Bancorporation, Google and Exxon Mobil.

8.2 Citigroup

Citigroup is the benchmark for our study. It is a
large market capitalisation US bank ($115 billion208)
with headquarters in New York and employs 240000
people209.
It has been chosen as a validate candidate for this

study because there is a lot of data available on the In-
ternet concerning its option prices and implied volatil-
ities (all of the following results are based on strikes,
maturities, market prices and implied volatilities found
at the following footnote210) and because there is su�-
cient data also for valid comparable companies to draw
more thorough conclusions about the di↵erences be-
tween the Heston, SABR and Monte Carlo models.
A dividend of $0.20 per share211 has been taken into

account in the calculations of implied volatility sur-
faces and option prices.

8.2.1 Underlying depreciation between 5%
and 1%

In this study we will analyse the call and put option
implied volatilities and prices given by the three mod-
els described previously. For both options, the average
implied volatilities (shown below in Tables 2 and 4)
and the consequent SABR parameters (Tables 3 and 5)
have been calculated by averaging the implied volatil-
ities of closing of business days March 23rd 2016 and
April 5th 2016, where the underlying has respectively
depreciated by 2.33% and 1.31%. The realised implied
volatilities and prices of the option will be for the clos-
ing of business April 7th 2016, where the stock price
decreased by 3.80%.
Let us analyse the performance of the three models

firstly for the call:

Table 2: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 44.34 44.80 36.17 36.34
40 31.79 30.07 30.32 33.61
45 27.15 26.42 27.33 29.60
50 27.49 23.95 25.08 26.86
55 33.60 22.71 23.20 25.75

208http://finance.yahoo.com/q?s=C
209http://www.forbes.com/companies/citigroup/
210http://finance.yahoo.com/q/op?s=C+Options
211http://finance.yahoo.com/q?s=C

Table 3: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.20 0.5 -0.59 2.41
Sep/16 0.21 0.5 -0.76 1.74
Jan/17 0.19 0.5 -0.64 0.84
Jan/18 0.21 0.5 -0.65 0.61

Figure 9: Citigroup Market Implied Volatility
(%/100) - Call - 07/04/16

Figure 10: Citigroup Heston Implied Volatility
(%/100) - Call - 07/04/16
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Figure 11: Citigroup SABR Implied Volatility
(%/100) - Call - 07/04/16

Figure 12: Citigroup Monte Carlo Implied
Volatility (%/100) - Call - 07/04/16

By comparing Figures 9, 10, 11 and 12, we can
spot the fact that the SABR model almost perfectly
matches the implied volatilities shown by the market
for all strikes and maturities. It overstates implied
volatility when the call is far in-the-money with one
month to maturity, but for the rest of the performance
it manages to portray a skew for the call having 2 years
to maturity. Moreover, the smile for the call having one
month to maturity is almost perfectly shown.
Similar results can be said for the Heston model,

which however fails to capture the spike in volatility
for the call having a few months to maturity and being
in-the-money and understated implied volatility for all
strikes and maturities.
Lastly, the Monte Carlo model overestimates implied

volatility for the call having one month to maturity
and does the opposite when the option has 2 years to
maturity. It fails to show the smile for the very short
maturity and does not show either the skew for the call
having 2 years to maturity.
Therefore, the clear winner in terms of approaching

the market volatilities shown by the market in this case
is the SABR model.

Figure 13: Citigroup Heston - Market price
di↵erential ($) - Call - 07/04/16

Figure 14: Citigroup SABR - Market price
di↵erential ($) - Call - 07/04/16

Figure 15: Citigroup Monte Carlo - Market
price di↵erential ($) - Call - 07/04/16
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When comparing the performances of the three mod-
els in terms of pricing the options (Figures 13 to 15),
the SABR model is again the clear winner. Indeed, the
price di↵erentials with respect to the observed market
prices are the smallest of the three models, reaching up
to an overestimation of $0.6 per option for very long
maturities. The Heston and Monte Carlo models, on
the other hand, although they perform well at pric-
ing calls close to maturity, they both underprice the
options, arriving to price di↵erentials of -$1 and -$2
respectively for longer maturities.

Let us now compare the three models with respect
to the put:

Table 4: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 69.93 56.45 51.95 44.27
25 58.40 48.29 43.90 40.30
30 47.17 38.89 38.13 35.07
35 38.06 33.75 33.16 31.05
40 31.28 29.30 29.57 30.45
45 27.67 23.95 26.52 25.48

Table 5: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.46 1.58
Sep/16 0.18 0.5 -0.64 0.97
Jan/17 0.18 0.5 -0.45 0.82
Jan/18 0.19 0.5 -0.99 0.35

Figure 16: Citigroup Market Implied
Volatility (%/100) - Put - 07/04/16

Figure 17: Citigroup Heston Implied Volatility
(%/100) - Put - 07/04/16

Figure 18: Citigroup SABR Implied Volatility
(%/100) - Put - 07/04/16

Figure 19: Citigroup Monte Carlo Implied
Volatility (%/100) - Put - 07/04/16

On the other hand, when analysing the put (Fig-
ures 16 to 19), the SABR model is not a clear winner
in terms of estimating implied volatility. Indeed the

46



Heston model is quite precise too: both this model
and the SABR one manage to capture the skew for
the put having very long maturities and the spike in
implied volatility when the option is very out-of-the-
money with one month to maturity. However they
both fail to capture the smile for the put having one
month to maturity.

The Monte Carlo model does a worse job in finding
implied volatility: it indeed overestimates it for the
put having one month to maturity, underestimates it
for the options with one year to maturity and approxi-
mates it for the option having longer maturities (where
however it fails to capture the smile seen in the market
implied volatilities).

Figure 20: Citigroup Heston - Market price
di↵erential ($) - Put - 07/04/16

Figure 21: Citigroup SABR - Market price
di↵erential ($) - Put - 07/04/16

Figure 22: Citigroup Monte Carlo - Market
price di↵erential ($) - Put - 07/04/16

When comparing the pricing performance of the
three models (Figures 20 to 22), we can see that the
Heston model does a great job at all strikes and matu-
rities except when the option is far in-the-money with
2 years to maturity. Indeed, the di↵erential there is of
about an $1.4 underpricing by the model.

The SABR model is as precise as the Heston model,
overpricing the put at an average of $0.1 for longer
maturities and of less than $0.1 for shorter ones.

The Monte Carlo model on the other hand under-
prices the put greatly for all strikes and maturities
(except when the option is far in-the-money with one
month to maturity), up to an underpricing of $1.5.

Thus, the Heston model performs as greatly as the
SABR model in this specific scenario.

8.2.2 Underlying depreciation between 1%
and 0%

Here we will first see in Tables 6 to 9 the respective
averaged implied volatilities and SABR calibrated pa-
rameters for call and put options after having retrieved
that the underlying has depreciated by 0.74% on March
14th 2016 and by 0.31% on March 31st 2016. For the
actual market data, the implied volatilities have been
retrieved at the end of business day April 4th 2016,
where the underlying has depreciated by 0.97%.

Table 6: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 43.97 37.32 34.85 35.36
40 33.30 30.87 31.04 32.42
45 27.64 27.28 27.88 29.39
50 26.32 24.88 25.43 27.48
55 31.16 23.61 23.76 25.83
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Table 7: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.52 2.12
Sep/16 0.19 0.5 -0.59 1.02
Jan/17 0.19 0.5 -0.62 0.63
Jan/18 0.20 0.5 -0.59 0.52

Figure 23: Citigroup Market Implied
Volatility (%/100) - Call - 04/04/16

Figure 24: Citigroup Heston Implied Volatility
(%/100) - Call - 04/04/16

Figure 25: Citigroup SABR Implied Volatility
(%/100) - Call - 04/04/16

Figure 26: Citigroup Monte Carlo Implied
Volatility (%/100) - Call - 04/04/16

Once again, we can see that the SABR model (Fig-
ure 25) estimates implied volatility identically to the
implied volatilities found in the market (Figure 23).
It portrays the smile for the call having one month
to maturity and the skew for the call having 1 year
and 2 years to maturity. Moreover, the values of im-
plied volatilities are neither underestimated nor over-
estimated by the model.
The Heston model (Figure 24), on the other hand,

while it correctly shows the smile and skews for the re-
spective maturities, underestimates the implied volatil-
ity for the call being far in-the-money with one month
to maturity. That is the only mistake committed by
the model.
The Monte Carlo model (Figure 26) overestimates

volatility for very short maturities and does the oppo-
site when the call has one year to maturity. Therefore,
it does a poor job in approximating implied volatility
here too.
Therefore, although not by far, the SABR model is

the winner in this case.
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Figure 27: Citigroup Heston - Market price
di↵erential ($) - Call - 04/04/16

Figure 28: Citigroup SABR - Market price
di↵erential ($) - Call - 04/04/16

Figure 29: Citigroup Monte Carlo - Market
price di↵erential ($) - Call - 04/04/16

When comparing the pricing performances of the
three models (Figures 27 to 29), we can see that the
SABR model matches the prices the closest to those of

the market. Indeed, it overprices the call at all strikes
and maturities by $0.1, while it underprices it when it
has one month to maturity and is very in-the-money
by $0.3.

The Heston and Monte Carlo models, on the other
hand, arrive to underestimate the call by about $1.5 for
longer maturities and by about $0.1 and $0.5 respec-
tively when the call has one month to maturity. There-
fore, the Heston model dominates the Monte Carlo one
here.

Let us see how the three models compare when
analysing the put implied volatilities and prices:

Table 8: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 69.34 58.06 52.10 45.62
25 61.14 50.05 44.77 42.21
30 47.85 40.69 38.64 35.76
35 38.33 34.74 33.81 32.22
40 31.78 30.31 30.11 29.60
45 28.23 26.83 27.03 27.71

Table 9: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.38 1.62
Sep/16 0.18 0.5 -0.36 1.13
Jan/17 0.18 0.5 -0.44 0.80
Jan/18 0.18 0.5 -0.41 0.57

Figure 30: Citigroup Market Implied
Volatility (%/100) - Put - 04/04/16
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Figure 31: Citigroup Heston Implied Volatility
(%/100) - Put - 04/04/16

Figure 32: Citigroup SABR Implied Volatility
(%/100) - Put - 04/04/16

Figure 33: Citigroup Monte Carlo Implied
Volatility (%/100) - Put - 04/04/16

Once again, as for the case of the underlying de-
preciating between 5% and 1%, here as well both the

Heston and SABR models (Figures 31 and 32 respec-
tively) are practically perfect at estimating the implied
volatilities at all strikes and maturities. They capture
the big spike in implied volatility for the put being very
out-of-the-money with one month to maturity and they
manage to show the skews for all maturities.

The Monte Carlo model (Figure 33) instead overes-
timates implied volatility for very short times to matu-
rity and does a better job for longer maturities. How-
ever, its performance is far worse than those of the
Heston and SABR models.

Figure 34: Citigroup Heston - Market price
di↵erential ($) - Put - 04/04/16

Figure 35: Citigroup SABR - Market price
di↵erential ($) - Put - 04/04/16
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Figure 36: Citigroup Monte Carlo - Market
price di↵erential ($) - Put - 04/04/16

Surprisingly enough, although the Heston model and
the SABR model perform equally when estimating the
implied volatility of the put, when comparing them in
terms of pricing (Figures 34 and 35), the Heston model
does a better job. Indeed, it prices the put correctly
for all maturities and strikes, except when the option
is far in-the-money with two years to maturity (with a
respective underpricing of $0.5).

The SABR model, on the other hand, overestimates
the put price at almost all strikes and maturities by
a greater and greater amount as the option becomes
more and more in-the-money (arriving to an overpric-
ing of $0.5 for longer maturities).

Lastly, while the Monte Carlo model is relatively
precise for short maturities, it greatly underprices the
put for longer ones, especially when the option is at-
the-money.

8.2.3 Underlying appreciation between 0%
and 1%

For this study we will analyse the Heston, SABR
and Monte Carlo performances for an underlying ap-
preciation of 0.84% occurred on closing of business day
April 6th 2016.

Before going into the detail, let us state that for the
Heston and SABR model, the market implied volatil-
ities for an underlying appreciation of 0.53% occurred
on March 10th 2016 and for an underlying appreciation
of 0.38% occurred on March 30th 2016 have been av-
eraged to obtain specific surfaces for the call and put
options (shown Tables 10 and 12) and SABR parame-
ters (Tables 11 and 13).

Table 10: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 43.42 37.38 35.67 35.03
40 32.41 31.20 31.50 32.79
45 28.10 27.67 28.55 29.68
50 27.15 25.40 26.11 27.70
55 31.06 24.15 24.29 26.50

Table 11: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.48 2.06
Sep/16 0.19 0.5 -0.57 1.01
Jan/17 0.20 0.5 -0.61 0.65
Jan/18 0.20 0.5 -0.57 0.46

Figure 37: Citigroup Market Implied
Volatility (%/100) - Call - 06/04/16

Figure 38: Citigroup Heston Implied Volatility
(%/100) - Call - 06/04/16
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Figure 39: Citigroup SABR Implied Volatility
(%/100) - Call - 06/04/16

Figure 40: Citigroup Monte Carlo Implied
Volatility (%/100) - Call - 06/04/16

We can see that the Heston and SABR models (Fig-
ures 38 and 39 respectively) do a great job at find-
ing the implied volatilities for the call at all strikes
and maturities. The only exception is for the Heston
model, where the same happens as shown for the un-
derlying depreciation between 1% and 0%: there is an
underestimation of implied volatility for the call being
in-the-money with one month to maturity.

The Monte Carlo model (Figure 40) fails to show the
smile and skew respectively for one month to maturity
and two years to maturity. Moreover, it overstates the
implied volatility for very short maturities and is quite
accurate for longer maturities. Therefore, also in this
case there is an ample margin for improvement under
the Monte Carlo model.

Figure 41: Citigroup Heston - Market price
di↵erential ($) - Call - 06/04/16

Figure 42: Citigroup SABR - Market price
di↵erential ($) - Call - 06/04/16

Figure 43: Citigroup Monte Carlo - Market
price di↵erential ($) - Call - 06/04/16

In terms of the pricing of the option (please refer to
Figures 41 to 43), the SABR model is the clear winner:
indeed, the absolute value in mispricing of the call does
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not pass the $0.5 figure, while it does go above $1 for
both the Heston and Monte Carlo models, especially
for long maturities. However, it must be stated that
these last two models are quite precise for short matu-
rities. They both underprice the call for long times to
maturity, however.

Now, let us analyse the performances of the models
with respect to the put:

Table 12: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 68.26 57.86 52.47 46.06
25 59.97 50.23 45.16 42.32
30 47.95 40.95 39.18 36.94
35 38.44 35.11 34.30 32.80
40 32.04 30.82 30.67 30.15
45 28.44 27.74 27.91 28.60

Table 13: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.41 1.52
Sep/16 0.18 0.5 -0.32 1.12
Jan/17 0.19 0.5 -0.39 0.81
Jan/18 0.19 0.5 -0.43 0.54

Figure 44: Citigroup Market Implied
Volatility (%/100) - Put - 06/04/16

Figure 45: Citigroup Heston Implied Volatility
(%/100) - Put - 06/04/16

Figure 46: Citigroup SABR Implied Volatility
(%/100) - Put - 06/04/16

Figure 47: Citigroup Monte Carlo Implied
Volatility (%/100) - Put - 06/04/16

Once again, the Heston model (Figure 45) performs
equally compared to the SABR model (Figure 46)
when finding the implied volatilities of the put. They
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estimate the implied volatilities correctly for all ma-
turities and strikes, showing the skews at all times to
maturity.

The Monte Carlo model (Figure 47), instead, over-
estimates implied volatility for very short maturities
and correctly estimates it for longer ones.

Figure 48: Citigroup Heston - Market price
di↵erential ($) - Put - 06/04/16

Figure 49: Citigroup SABR - Market price
di↵erential ($) - Put - 06/04/16

Figure 50: Citigroup Monte Carlo - Market
price di↵erential ($) - Put - 06/04/16

With respect to the pricing of the put, the Heston
model (Figure 48) is the one that performs the best: in-
deed, it correctly prices the option at all maturities and
strikes except when the option is very in-the-money
with two years to maturity, in which case the mispric-
ing is equivalent to an underestimation of $1.

SABR model-wise (Figure 49), while the mispric-
ings never go above $0.7, they are almost everywhere,
with the overestimations of prices increasing with both
moneyness and time to maturity.

Lastly, the Monte Carlo model (Figure 50) does a
great job at pricing short-dates puts, and underes-
timates puts with longer maturities, especially those
that are near-the-money.

8.2.4 Underlying appreciation between 1%
and 5%

For this study the average implied volatilities (Ta-
bles 14 and 16) and respective SABR parameters (Ta-
bles 15 and 17) have been calculated after a stock ap-
preciation of 1.72% on April 1st 2016 and of 1.61%
on April 11th 2016. The stock appreciation that has
been recorded in order to retrieve the market implied
volatility and price data occurred on April 14th 2016,
for an underlying appreciation of 1.65%.

Let us firstly see the performance of the three models
for the call option:

Table 14: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 47.71 38.25 34.31 33.19
40 30.89 29.67 30.07 31.88
45 26.71 25.97 27.13 27.97
50 27.54 23.28 24.69 27.27
55 33.99 22.61 22.99 25.32
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Table 15: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.16 0.5 -0.17 2.89
Sep/16 0.17 0.5 -0.47 1.33
Jan/17 0.18 0.5 -0.53 0.71
Jan/18 0.19 0.5 -0.65 0.34

Figure 51: Citigroup Market Implied
Volatility (%/100) - Call - 14/04/16

Figure 52: Citigroup Heston Implied Volatility
(%/100) - Call - 14/04/16

Figure 53: Citigroup SABR Implied Volatility
(%/100) - Call - 14/04/16

Figure 54: Citigroup Monte Carlo Implied
Volatility (%/100) - Call - 14/04/16

In this case, unlike the other precedent ones, both
the Heston (Figure 52) and SABR (Figure 53) models
win the comparison. Indeed, they both fail to capture
the spike in implied volatility when the option is far in-
the-money with one month to maturity. However, they
both estimate the skews correctly for all maturities.

Once again, the Monte Carlo model (Figure 54) over-
estimates implied volatility for very short maturities
and correctly measures it for longer ones, failing at the
same time to show the skews for each time to maturity.
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Figure 55: Citigroup Heston - Market price
di↵erential ($) - Call - 14/04/16

Figure 56: Citigroup SABR - Market price
di↵erential ($) - Call - 14/04/16

Figure 57: Citigroup Monte Carlo - Market
price di↵erential ($) - Call - 14/04/16

Even if the Heston model performs as well as the
SABR model in terms of estimating implied volatili-
ties for the call, it is worse than the Stochastic Al-

pha Beta Rho model when pricing the option. Indeed,
both the Heston (Figure 55) and Monte Carlo (Fig-
ure 57) models are quite accurate for short maturities,
with overestimations up to $0.3 for the Heston model
and underestimations up to $0.3 for the Monte Carlo
model. However, they both greatly underprice the call
by over $0.5 for longer maturities, whereas the SABR
model (Figure 56) overprices the call by $0.6 when it
is far in-the-money with one month to maturity and
by only $0.2 for the rest of strikes and maturities.

The following is the analysis of the performance of
the three models with respect to the put option:

Table 16: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 71.33 57.52 51.74 44.61
25 59.38 49.03 44.27 41.57
30 48.83 40.02 37.91 35.69
35 37.40 33.22 33.03 31.56
40 30.71 29.07 29.53 29.30
45 27.40 25.84 26.62 26.88

Table 17: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.18 0.5 0.04 2.06
Sep/16 0.16 0.5 -0.06 1.32
Jan/17 0.17 0.5 -0.20 0.92
Jan/18 0.18 0.5 -0.59 0.49

Figure 58: Citigroup Market Implied
Volatility (%/100) - Put - 14/04/16
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Figure 59: Citigroup Heston Implied Volatility
(%/100) - Put - 14/04/16

Figure 60: Citigroup SABR Implied Volatility
(%/100) - Put - 14/04/16

Figure 61: Citigroup Monte Carlo Implied
Volatility (%/100) - Put - 14/04/16

We can see here that, although the Heston (Figure
59) and SABR (Figure 60) models perform equiva-
lently in estimating implied volatilities, they are poorer

at doing so than when the underlying appreciates by
less than 1% or even depreciates. Indeed, the main dif-
ference compared to the other underlying movements
lies in the underestimation of implied volatilities when
the put has one month to maturity and is near-the-
money.

Once again, the Monte Carlo methodology (Figure
61) does a poor job at estimating implied volatility,
failing not only to capture the various skews accord-
ing to times to maturity, but also by overestimating
implied volatility greatly for short maturities.

Figure 62: Citigroup Heston - Market price
di↵erential ($) - Put - 14/04/16

Figure 63: Citigroup SABR - Market price
di↵erential ($) - Put - 14/04/16
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Figure 64: Citigroup Monte Carlo - Market
price di↵erential ($) - Put - 14/04/16

Surprisingly, the SABRmodel (Figure 63) is the win-
ner when it comes to pricing the put option: it over-
prices it by less then $0.1 for all strikes and maturities,
except for when the put is far in-the-money with one
month to maturity, where the overpricing increases to
$0.4.
The Heston model (Figure 62) is quite precise as

well, but the absolute value in the price di↵erential is
more than twice that of the SABR model, reaching
$0.2 in underestimation of the call price.
Lastly, the Monte Carlo model (Figure 64) is great at

pricing very short-dated puts, but fails to price longer-
dated puts (with the price di↵erential with respect to
market prices reaching almost $1.5 for near-the-money
puts).

8.3 Goldman Sachs

The next study analyses the performance of the
three models for Goldman Sachs, a large market cap-
italisation US bank ($69 billion212) with headquarters
in New York, USA. It employes about 40000 people
and is involved exclusively in investment banking ac-
tivities, such as Merger and Acquisitions, Trading, In-
vesting and Lending, and Investment Management213.
It has been chosen as a validate comparable company

because it is a very similar bank to Citigroup, with two
exceptions: smaller market cap and no involvement in
commercial banking.
Thus, the only ways that Goldman Sachs should be

viewed di↵erently from Citigroup is exclusively in the
market cap and in the activities it is involved in. All
of the following results are based on strikes, maturi-
ties implied volatilities and market prices found at the
following footnote214.
The dividend, found on Yahoo! Finance215, that

212http://finance.yahoo.com/q?s=GS
213http://finance.yahoo.com/q/pr?s=GS+Profile
214http://finance.yahoo.com/q/op?s=GS+Options
215http://finance.yahoo.com/q?s=GS

will be taken into account in the calculations of the
volatility surfaces and prices is of $2.60 per share.

Let us now analyse the Heston, SABR and Monte
Carlo performance for various underlying daily changes
in value.

8.3.1 Underlying depreciation between 5%
and 1%

For this section we will analyse the three models af-
ter an average of implied volatilities (Tables 18 and 20),
with respective retrieval of SABR parameters (Tables
19 and 21 respectively for calls and puts), obtained by
the stock depreciating by 1.53% on March 5th 2016
and by 1.28% on April 4th 2016. The market data has
been obtained after the underlying has depreciated by
3.08% on April 7th 2016.

Table 18: Goldman Sachs Mean of Implied
Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
150 25.70 24.95 28.43
155 24.40 24.30 24.48
160 23.36 23.68 25.64
165 22.55 23.09 26.63
170 21.87 22.61 25.95
175 21.41 22.17 23.62
180 21.23 21.77 25.04

Table 19: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.31 0.5 -0.57 1.15
Jan/17 0.30 0.5 -0.51 0.58
Jan/18 0.31 0.5 -0.36 0.94

Figure 65: Goldman Sachs Market Implied
Volatility (%/100) - Call - 07/04/16
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Figure 66: Goldman Sachs Heston Implied
Volatility (%/100) - Call - 07/04/16

Figure 67: Goldman Sachs SABR Implied
Volatility (%/100) - Call - 07/04/16

Figure 68: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Call - 07/04/16

In terms of the call, we can see that the Hes-
ton model (Figure 66) slightly underestimates implied

volatility at all strikes and maturities, However, it
manages to show the skew for all maturities.

The same can be said for the SABR model (Figure
67), except for when it overestimates implied volatility
when the call has two years to maturity.

The Monte Carlo model (Figure 68) on the other
hand fails to show the skews at all maturities and over-
estimates volatility when the option has a few months
to maturity.

Therefore, the Heston and SABR model are superior
in this specific case.

Figure 69: Goldman Sachs Heston - Market
price di↵erential ($) - Call - 07/04/16

Figure 70: Goldman Sachs SABR - Market
price di↵erential ($) - Call - 07/04/16
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Figure 71: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Call - 07/04/16

In terms of di↵erentials of prices, the Heston model
(Figure 69) is quite precise when the option has a few
months to maturity. On the other hand, as maturity
increases, the di↵erential becomes more and more neg-
ative, arriving to -$6.

The SABR model (Figure 70) instead is quite pre-
cise: indeed, for short maturities the absolute value in
the di↵erential does not go above $0.5, while for longer
maturities it does not go above $1.5.

The performance of the Monte Carlo model (Fig-
ure 71) is slightly more precise than that of the Heston
model, with underestimations of the call for longer ma-
turities not going beyond the $5 figure.

Hence, the SABR model is superior in pricing the
call for this particular case.

Table 20: Goldman Sachs Mean of Implied
Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
130 32.43 30.19 29.19
135 30.63 29.17 28.42
140 29.09 28.26 28.38
145 27.60 27.35 26.50
150 26.40 26.68 30.92
155 25.21 25.88 26.69
160 24.24 25.25 25.05

Table 21: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.31 0.5 -0.49 1.21
Jan/17 0.32 0.5 -0.46 0.68
Jan/18 0.34 0.5 -0.94 0.14

Figure 72: Goldman Sachs Market Implied
Volatility (%/100) - Put - 07/04/16

Figure 73: Goldman Sachs Heston Implied
Volatility (%/100) - Put - 07/04/16

Figure 74: Goldman Sachs SABR Implied
Volatility (%/100) - Put - 07/04/16
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Figure 75: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Put - 07/04/16

Also for the put option we can see that both the Hes-
ton (Figure 73) and SABR (Figure 74) models slightly
underestimate volatility when compared to the mar-
ket data, especially when the put is out-of-the-money.
However, they both show the skews for shorter matu-
rities correctly.

Monte Carlo-wise (Figure 75), implied volatility is
overestimated for the put having a few months to ma-
turity, and the opposite happens for longer maturities.
Moreover, it fails to show the skew for the put having
a few months to maturity.

Figure 76: Goldman Sachs Heston - Market
price di↵erential ($) - Put - 07/04/16

Figure 77: Goldman Sachs SABR - Market
price di↵erential ($) - Put - 07/04/16

Figure 78: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Put - 07/04/16

In terms of the price di↵erential (Figures 76 to 78),
the three methodologies are quite precise for when the
option has a few months to maturity. The Heston dif-
ferential indeed approximates $0, the SABR reaches $0
as well and the Monte Carlo methodology too.
For longer maturities, the Monte Carlo model is

slightly more precise, as the absolute value in di↵eren-
tials does not go beyond $3, while for the Heston model
it goes to $6 for the put being in-the-money with two
years to maturity and while for the SABR model the
price di↵erential is above $4 for the put having two
years to maturity and being in-the-money.

8.3.2 Underlying depreciation between 1%
and 0%

For this analysis, let us firstly state that the implied
volatilities used for the Heston and SABR models have
been averaged after stock depreciations of 0.29% and
0.10% occurred respectively on March 14th 2016 and
April 6th 2016. Tables 22 to 25 show respectively the
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average implied volatilities and SABR calibrated pa-
rameters for calls and puts for this specific underlying
depreciation.

The actual market data has been retrieved after a
stock depreciation of 0.09% occurred on April 6th 2016.

Table 22: Goldman Sachs Mean of Implied
Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
150 26.74 25.87 26.08
155 25.62 25.10 26.44
160 24.61 24.47 26.61
165 23.71 23.89 27.30
170 23.03 23.41 25.01
175 22.62 22.96 25.13
180 22.33 22.52 25.48

Table 23: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.31 0.5 -0.44 1.15
Jan/17 0.31 0.5 -0.43 0.65
Jan/18 0.33 0.5 -0.14 0.07

Figure 79: Goldman Sachs Market Implied
Volatility (%/100) - Call - 06/04/16

Figure 80: Goldman Sachs Heston Implied
Volatility (%/100) - Call - 06/04/16

Figure 81: Goldman Sachs SABR Implied
Volatility (%/100) - Call - 06/04/16

Figure 82: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Call - 06/04/16

As we can observe from Figures 79 to 82, the SABR
model is the one that most closely approaches the ac-
tual market volatility data. Indeed, except for the
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spike in volatility occurring for the call being slightly
out-of-the-money with two years to maturity, the rest
of strikes and maturities points show perfectly esti-
mated skews.

The Heston model does a discrete job too, except
that it underestimates implied volatilities when the call
is out-of-the-money.

Lastly, the Monte Carlo methodology performs
poorly in terms of estimating implied volatility as it
overestimates it for the very short time to maturity
and fails to show the volatility skews.

Figure 83: Goldman Sachs Heston - Market
price di↵erential ($) - Call - 06/04/16

Figure 84: Goldman Sachs SABR - Market
price di↵erential ($) - Call - 06/04/16

Figure 85: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Call - 06/04/16

However, in terms of pricing (Figures 83 to 85),
the three models can be said to perform equally. In-
deed, for in-the-money calls, the biggest discrepancy is
shown by the SABR model ($5 of overpricing vs. $4
for the other two models), while for out-of-the-money
calls the SABR model has a smaller discrepancy ($1.5
in absolute value) than the Heston and Monte Carlo
models (about $2 for each).

Let us now see the performances of the models with
respect of the put option:

Table 24: Goldman Sachs Mean of Implied
Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
130 42.77 29.82 31.94
135 40.05 27.63 28.89
140 33.56 28.11 30.48
145 28.24 27.19 27.68
150 27.02 26.46 26.93
155 25.89 25.72 26.94
160 24.96 25.09 27.10

Table 25: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.24 0.5 0.16 3.57
Jan/17 0.32 0.5 -0.48 0.51
Jan/18 0.27 0.5 0.09 1.28
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Figure 86: Goldman Sachs Market Implied
Volatility (%/100) - Put - 06/04/16

Figure 87: Goldman Sachs Heston Implied
Volatility (%/100) - Put - 06/04/16

Figure 88: Goldman Sachs SABR Implied
Volatility (%/100) - Put - 06/04/16

Figure 89: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Put - 06/04/16

The SABR model (figure 88) seems to be the winner
in terms of estimating implied volatility. Indeed, it
successfully shows the spike in volatility when the put
has a few months to maturity and is out-of-the-money.
Moreover, it captures the skews in volatility correctly
for all maturities. Lastly, the estimations of implied
volatility are the closest when comparing them to those
of the other two models.

The Heston model (figure 87) underestimates volatil-
ity at every strike and maturity, and the same can be
stated for the Monte Carlo methodology (figure 89).
Moreover, they both do not properly show the skews
shown by the market data.

Figure 90: Goldman Sachs Heston - Market
price di↵erential ($) - Put - 06/04/16
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Figure 91: Goldman Sachs SABR - Market
price di↵erential ($) - Put - 06/04/16

Figure 92: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Put - 06/04/16

With respect to the pricing of the put, it is interest-
ing to point out that the three models underprice the
option at almost all strikes and maturities. The Heston
model (figure 90) underestimates the put by about $1
for all maturities and strikes, except when the put is
out-of-the-money with a few months to maturity, while
the Monte Carlo process (figure 92) does so by $1.5 for
short maturities and by $4 for longer ones.
The SABR model (figure 91) underestimates the put

when it is in-the-money by about $3. When the option
is out-of-the-money, the price di↵erentials approach
the $0 figure.
Therefore, because of the previous analysis, the He-

ston model can be declared as the best model to use
for pricing puts in this particular instance.

8.3.3 Underlying appreciation between 0%
and 1%

For this section, we will analyse the three models
after underlying appreciations of 0.55% and 0.95% oc-

curred respectively on March 28th 2016 and March 30th

2016. Please refer to Tables 26 to 29 for the average
implied volatilities and SABR calibrated parameters
used to estimate the implied volatilities and options
prices.

For the market data, the stock appreciation has been
of 0.66% and has occurred on April 14th 2016.

Table 26: Goldman Sachs Mean of Implied
Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
150 25.95 25.74 25.90
155 24.56 24.69 24.66
160 23.66 24.11 25.45
165 22.82 23.65 25.09
170 22.11 23.29 24.43
175 21.55 22.26 24.22
180 21.52 22.05 23.42

Table 27: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.29 0.5 -0.39 1.23
Jan/17 0.30 0.5 -0.49 0.59
Jan/18 0.32 0.5 -0.73 0.13

Figure 93: Goldman Sachs Market Implied
Volatility (%/100) - Call - 14/04/16
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Figure 94: Goldman Sachs Heston Implied
Volatility (%/100) - Call - 14/04/16

Figure 95: Goldman Sachs SABR Implied
Volatility (%/100) - Call - 14/04/16

Figure 96: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Call - 14/04/16

While the Heston model (Figure 94) correctly por-
trays skews for all maturities, it underestimates the
implied volatility greatly.

Instead, the SABR model (Figure 95) is more pre-
cise and calibrates the values of implied volatilities cor-
rectly, except for the low value in implied volatility reg-
istered for the call having two years to maturity and
being at-the-money.

The Monte Carlo model (Figure 96), once again, fails
to show the skews for the various maturities, and over-
estimates volatility for the option having one month to
maturity.

Figure 97: Goldman Sachs Heston - Market
price di↵erential ($) - Call - 14/04/16

Figure 98: Goldman Sachs SABR - Market
price di↵erential ($) - Call - 14/04/16
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Figure 99: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Call - 14/04/16

Also in terms of pricing the call, the SABR model
(Figure 98) is the winner. Indeed, it overprices the
option by about $1 for all maturities and strikes, except
for an overpricing of $5 when the call has two years to
maturity and is at-the-money.

The Heston model (Figure 97), on the other hand,
underprices the call by over $2 for short maturities and
by over $4 for longer ones.

Lastly, the Monte Carlo process (Figure 99) over-
prices the call between $1.5 and $2 for all maturities
and strikes.

Table 28: Goldman Sachs Mean of Implied
Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
130 32.74 30.83 30.68
135 30.77 29.41 28.81
140 29.96 28.50 28.89
145 27.69 27.59 28.50
150 26.49 27.32 30.10
155 25.38 26.78 27.58
160 24.63 26.19 27.14

Table 29: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.30 0.5 -0.23 1.40
Jan/17 0.31 0.5 0.02 1.09
Jan/18 0.35 0.5 -0.44 0.21

Figure 100: Goldman Sachs Market Implied
Volatility (%/100) - Put - 14/04/16

Figure 101: Goldman Sachs Heston Implied
Volatility (%/100) - Put - 14/04/16

Figure 102: Goldman Sachs SABR Implied
Volatility (%/100) - Put - 14/04/16
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Figure 103: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Put - 14/04/16

When analysing the put, the SABR model (Figure
102) is the only one that manages to catch the spike
in volatility when the option is out-of-the-money with
a few months to maturity. Moreover, it calibrates the
values of implied volatilities at all strikes and maturi-
ties.

The Heston model (Figure 101) does calibrate them
correctly too, but does not show the famous spike that
has been mentioned in the previous sentence.

The Monte Carlo calibration process (Figure 103)
overestimates volatility for short maturities and does
the opposite for longer ones, as it has often happened
in other circumstances.

Figure 104: Goldman Sachs Heston - Market
price di↵erential ($) - Put - 14/04/16

Figure 105: Goldman Sachs SABR - Market
price di↵erential ($) - Put - 14/04/16

Figure 106: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Put - 14/04/16

And in terms of pricing the put the SABR model
(Figure 105) is the winner. Indeed, it overprices the
option by only $1 for short maturities and $2 for longer
ones, vs. the correct pricing of short-dates options He-
ston model (Figure 104), which however underprices
the options with longer maturities by about $4.
The Monte Carlo process (Figure 106) also underes-

timates prices for long-dated puts by about $4 and by
about $1 for short-dated ones.

8.3.4 Underlying appreciation between 1%
and 5%

Here the analysis comes after two stock apprecia-
tions of 1.81% and 1.28% occurred on April 1st 2016
and April 11th 2016 respectively. For the actual market
data, it has been retrieved after a stock appreciation
of 2.29% occurred on April 19th 2016. Tables 30 to 33
show the average implied volatilities and SABR cali-
brated parameters with respect to these specific stock
percentage increases.
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Table 30: Goldman Sachs Mean of Implied
Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
150 25.89 25.24 25.26
155 24.68 24.46 22.90
160 23.67 23.93 25.06
165 22.75 23.32 24.27
170 22.00 22.79 24.99
175 21.72 22.37 23.02
180 21.51 21.97 23.83

Table 31: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.29 0.5 -0.35 1.26
Jan/17 0.30 0.5 -0.39 0.65
Jan/18 0.31 0.5 0.18 0.08

Figure 107: Goldman Sachs Market Implied
Volatility (%/100) - Call - 19/04/16

Figure 108: Goldman Sachs Heston Implied
Volatility (%/100) - Call - 19/04/16

Figure 109: Goldman Sachs SABR Implied
Volatility (%/100) - Call - 19/04/16

Figure 110: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Call - 19/04/16

The market implied volatility data (Figure 107)
shows spikes in volatility for long-dated calls, and a
more uniform skew for short-dates ones. Respective
skews can be noticed in both the Heston model ((Fig-
ure 108)which however underestimates the call implied
volatility as the option becomes out-of-the-money) and
the SABR model ((Figure 109)which shows levels of
implied volatility closer to those of the market).

The Monte Carlo process (Figure 110) not only over-
estimates the call implied volatilities when it has a few
months to maturity, but also fails to show such skews.
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Figure 111: Goldman Sachs Heston - Market
price di↵erential ($) - Call - 19/04/16

Figure 112: Goldman Sachs SABR - Market
price di↵erential ($) - Call - 19/04/16

Figure 113: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Call - 19/04/16

Surprisingly enough, for the pricing of the call (Fig-
ures 111 to 113), the Monte Carlo process is the most
precise one. Indeed, its price di↵erentials to not go

beyond the absolute value of $2, while for the Heston
model the price di↵erential reaches the -$4 figure for
out-of-the-money calls and for the SABR model the
di↵erential arrives to $3.5 for long-dated calls.

Let us now see how the three construction method-
ologies compare with respect to the put option:

Table 32: Goldman Sachs Mean of Implied
Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
130 32.93 30.44 30.04
135 31.15 29.40 29.59
140 29.47 28.52 28.77
145 28.12 27.58 28.14
150 26.76 26.89 30.28
155 25.67 26.11 27.06
160 24.68 26.73 26.89

Table 33: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.30 0.5 -0.20 1.40
Jan/17 0.31 0.5 0.17 1.27
Jan/18 0.35 0.5 -0.79 0.16

Figure 114: Goldman Sachs Market Implied
Volatility (%/100) - Put - 19/04/16
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Figure 115: Goldman Sachs Heston Implied
Volatility (%/100) - Put - 19/04/16

Figure 116: Goldman Sachs SABR Implied
Volatility (%/100) - Put - 19/04/16

Figure 117: Goldman Sachs Monte Carlo
Implied Volatility (%/100) - Put - 19/04/16

It can be seen that the SABR model (Figure 116)
is the one which approximates implied volatility the
best. It captures the spike in volatility when the put is

out-of-the-money with a few months to maturity, and
shows correctly the skews for all maturities.

The Heston model (Figure 115) manages to show
skews too, but it underestimates implied volatility
slightly at all strikes and maturities.

The Monte Carlo method (Figure 117) overestimates
volatility for short-dated puts and does the opposite for
long-dated ones and fails to show skews for the various
times to maturity.

Figure 118: Goldman Sachs Heston - Market
price di↵erential ($) - Put - 19/04/16

Figure 119: Goldman Sachs SABR - Market
price di↵erential ($) - Put - 19/04/16
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Figure 120: Goldman Sachs Monte Carlo -
Market price di↵erential ($) - Put - 19/04/16

Lastly, in terms of the pricing of the put, we can see
that the Heston model (Figure 118) correctly prices
the option for short maturities and underestimates its
price for longer maturities, up to an absolute value of
$8.

The SABR model (Figure 119) has a ranged over-
pricing of the call between $2 and $0.5.

The Monte Carlo (Figure 120) method’s ranges vary
from $2 to -$4.

Hence, the SABR model is the most stable one of the
three, with also the lowest average in absolute value of
price di↵erential.

8.4 Zions Bancorporation

Zions Bancorporation is a mid-market capitalisation
US bank ($4.54 billion216) with headquarters in Salt
Lake Citi, Utah, and employs about 10000 people217.

It has been chosen as a validate comparable company
for this study because there is a lot of data available on
the Internet concerning its option prices and implied
volatilities (all of the following results are based on
strikes, maturities, market prices and implied volatili-
ties found at the following footnote218).

Moreover, the way Zions Bancorporation should be
viewed di↵erent from Citigroup is exclusively in the
market capitalisation.

A dividend of $0.24 per share219 has been considered
in the following calculations as well.

Let us now show how the Heston, SABR and Monte
Carlo models have performed with respect to the mar-
ket implied volatilities and prices.

216http://finance.yahoo.com/q?s=ZION
217https://en.wikipedia.org/wiki/Zions Bancorporation
218http://finance.yahoo.com/q/op?s=ZION+Options
219http://finance.yahoo.com/q?s=ZION

8.4.1 Underlying depreciation between 5%
and 1%

For this analysis, the average implied volatilities
have been retrieved after a double stock depreciation
occurred on both March 31st 2016 (-1.71%) and on
April 5th 2016 (-1.99%). The respective average im-
plied volatilities surfaces and SABR calibrated param-
eters for calls and puts can be found at Tables 34 to
37. The actual market data and implied volatility has
been obtained on April 7th 2016 after an underlying
depreciation of 2.80%.

Let us firstly see how the three models compare to
each other for the call option:

Table 34: Zions Bancorporation Mean of
Implied Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
22 58.60 54.03 39.11
23 54.35 44.57 40.44
24 35.45 42.73 35.93
25 46.69 40.90 31.42
26 32.15 39.09 30.94
27 31.18 37.28 30.47
28 30.62 34.50 30.85
29 30.47 32.50 30.85
30 34.86 31.16 32.58

Table 35: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.25 0.5 -0.84 3.67
Jan/17 0.23 0.5 -0.77 1.78
Jan/18 0.15 0.5 -0.58 1.81

Figure 121: Zions Bancorporation Market
Implied Volatility (%/100) - Call - 07/04/16
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Figure 122: Zions Bancorporation Heston
Implied Volatility (%/100) - Call - 07/04/16

Figure 123: Zions Bancorporation SABR
Implied Volatility (%/100) - Call - 07/04/16

Figure 124: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Call -

07/04/16

As we can see, the SABR model (Figure 123) is the
one that calibrates most precisely the implied volatil-

ity with respect to the market. Indeed, it manages to
capture the spike in volatility when the option is very
in-the-money and with one month to maturity. How-
ever, it shows skews for all maturities, something that
is not seen in the market implied volatility surface.

The same can be said for the Heston mode (Figure
122)l: not only does it show skews at all maturities, but
it also underestimates volatility at all strikes and ma-
turities. However, it is great in showing the decreasing
volatility for the option going form being in-the-money
to out-of-the-money.

The Monte Carlo method (Figure 124) underprices
volatility at all strikes and maturities, and fails to show
the bumps in volatility shown by the market data.

Figure 125: Zions Bancorporation Heston -
Market price di↵erential ($) - Call - 07/04/16

Figure 126: Zions Bancorporation SABR -
Market price di↵erential ($) - Call - 07/04/16
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Figure 127: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Call -

07/04/16

When comparing the models in terms of the pricing
of the call (Figures 125 to 127), the Heston and Monte
Carlo models do a better job the the SABR model
when the call is in-the-money, as the absolute value of
the mispricing is of only $0.5 for them and $1 for the
SABR model. However, when the option is out-of-the-
money, the Heston model and SABR model improve
their pricing calibrations, with mispricings approach-
ing the $0 value.

The Monte Carlo model on the other hand still shows
mispricings of about $0.5. Therefore, the winner in the
comparison is the Heston model.

Table 36: Zions Bancorporation Mean of
Implied Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
15 54.20 45.71 39.35
18 43.27 39.19 35.71
20 38.55 34.21 35.35
23 32.18 32.68 30.27
25 18.97 28.41 27.20
27 28.28 23.26 30.03

Table 37: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.13 0.5 -0.46 1.74
Jan/17 0.15 0.5 -1.00 0.61
Jan/18 0.14 0.5 -0.33 0.55

Figure 128: Zions Bancorporation Market
Implied Volatility (%/100) - Put - 07/04/16

Figure 129: Zions Bancorporation Heston
Implied Volatility (%/100) - Put - 07/04/16

Figure 130: Zions Bancorporation SABR
Implied Volatility (%/100) - Put - 07/04/16

74



Figure 131: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Put -

07/04/16

As it can be noticed, the market implied volatility
surface (Figure 128) shows skews, thing that can be
also seen in the Heston (Figure 129) and SABR (Fig-
ure 130) models. Moreover, volatility is correctly es-
timated correctly from both models (with the SABR
winning because it is slightly more precise in the cali-
bration).

The Monte Carlo model (Figure 131), on the other
hand, not only underestimates implied volatility at all
strikes and maturities, but also fails to portray the
skews for the various times to maturity.

Figure 132: Zions Bancorporation Heston -
Market price di↵erential ($) - Put - 07/04/16

Figure 133: Zions Bancorporation SABR -
Market price di↵erential ($) - Put - 07/04/16

Figure 134: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Put -

07/04/16

When comparing the three models in terms of the
pricing of the option (Figures 132 to 134), the Hes-
ton model is a clear winner: indeed, its mispricings
are almost $0 for all strikes and maturities. On the
other hand, there are big mispricings for the SABR
model, especially when the put is in-the-money (up to
$0.4) and for Monte Carlo as well (underpricings of
$0.6 when the put is out-of-the-money).
Therefore, when there is an underlying movement

between -5% and -1% for a small cap bank, the Heston
model seems to be the best model to use out of the
three analysed here.

8.4.2 Underlying depreciation between 1%
and 0%

In this case the average implied volatilities have been
found after a stock depreciation of 0.4% occurred on
March 14th 2016 and of 0.17% on April 1st 2016. The
market data has been found after the stock has again
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depreciated by 0.12% on April 4th 2016. Tables 38 to
41 show the mean of implied volatilities and calibrated
SABR parameters respectively for calls and puts.

Table 38: Zions Bancorporation Mean of
Implied Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
22 46.15 44.27 36.63
23 43.63 38.69 36.18
24 33.18 37.41 33.48
25 38.38 36.13 30.86
26 30.71 35.00 30.40
27 30.05 33.86 30.31
28 29.11 32.50 30.00
29 28.81 31.50 30.50
30 30.77 30.90 30.48

Table 39: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.17 0.5 -0.66 2.37
Jan/17 0.18 0.5 -0.56 1.37
Jan/18 0.13 0.5 -0.44 1.56

Figure 135: Zions Bancorporation Market
Implied Volatility (%/100) - Call - 04/04/16

Figure 136: Zions Bancorporation Heston
Implied Volatility (%/100) - Call - 04/04/16

Figure 137: Zions Bancorporation SABR
Implied Volatility (%/100) - Call - 04/04/16

Figure 138: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Call -

04/04/16

As in the previous case, the SABR model (Figure
137) is the best one to use to capture implied volatility
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for the call when the underlying movement is nega-
tive. Indeed, it captures the skew for all maturities
and prices it correctly at all maturities and strikes (ex-
cept when it underprices at the point where the call
is in-the-money with a few months to maturity and
except for the spike in volatility when the option is
at-the-money, not caught by the model).

The Heston model (Figure 136) also shows correctly
skews for all maturities, but has slightly lower levels of
volatility than those shown by the market.

The Monte Carlo model (Figure 137), lastly, fails to
show such skews and underestimates volatility at all
strikes and maturities.

Figure 139: Zions Bancorporation Heston -
Market price di↵erential ($) - Call - 04/04/16

Figure 140: Zions Bancorporation SABR -
Market price di↵erential ($) - Call - 04/04/16

Figure 141: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Call -

04/04/16

When analysing the pricing of the call (Figures 139
to 141), the Heston model shows underestimations of
the price of the option of about $0.3, while the SABR
model shows mispricings in absolute value of up to $0.2
and the Monte Carlo model underprices the call at
all strikes and maturities between $0.5 and $1. This
declares that the SABR model is superior to the other
two in this instance.

Let us now see how the methodologies have per-
formed with respect to the put option:

Table 40: Zions Bancorporation Mean of
Implied Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
15 54.50 46.35 40.14
18 43.95 40.16 37.52
20 40.29 36.34 35.75
23 34.67 34.45 30.89
25 27.85 31.35 29.92
27 32.47 28.37 21.67

Table 41: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.15 0.5 -0.18 1.58
Jan/17 0.16 0.5 -0.71 0.58
Jan/18 0.15 0.5 -0.12 0.64

77



Figure 142: Zions Bancorporation Market
Implied Volatility (%/100) - Put - 04/04/16

Figure 143: Zions Bancorporation Heston
Implied Volatility (%/100) - Put - 04/04/16

Figure 144: Zions Bancorporation SABR
Implied Volatility (%/100) - Put - 04/04/16

Figure 145: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Put -

04/04/16

Both the Heston (Figure 143) and SABR (Figure
144) models show skews for the put at all maturi-
ties, and they do so correctly (except for a bump in
volatility missed out when the option is at-the-money).
However, the Heston model underestimates the implied
volatility of the put more than does the SABR model.

The Monte Carlo model (Figure 145), once again,
fails to show the skews for the various times to matu-
rity, and underestimates volatility at all levels.

Thus, the SABR model is the best model to use in
this case.

Figure 146: Zions Bancorporation Heston -
Market price di↵erential ($) - Put - 04/04/16
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Figure 147: Zions Bancorporation SABR -
Market price di↵erential ($) - Put - 04/04/16

Figure 148: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Put -

04/04/16

However, even if the SABR model is the winner in
estimating implied volatility for this specific case, the
same cannot be said when pricing the put (please refer
to Figures 146 to 148). Indeed, from the figures we
can see that the Heston model misprices the put by
up to $0.4, while the SABR model does so up to $0.5,
especially when the option is in-the-money. The Monte
Carlo method, on the other hand, underprices the put
by around $0.5 especially when the option is out-of-
the-money.
Therefore, the Heston model wins this particular

case.

8.4.3 Underlying appreciation between 0%
and 1%

For this study we analyse the implied volatilities
through firstly averaging them after stock price ap-
preciations of 0.71% on March 21st 2016 and 0.73% on
April 8th 2016, and secondly by recording the market

data after an underlying movement of 0.99% occurred
on April 14th 2016. Tables 42 to 45 show the average
implied volatilities and SABR calibrated parameters
for the calls and puts.

Table 42: Zions Bancorporation Mean of
Implied Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
22 51.67 42.00 34.00
23 33.74 34.82 32.48
24 32.11 36.35 32.24
25 31.25 37.88 32.00
26 31.80 34.34 31.19
27 31.52 30.80 30.38
28 30.89 30.25 29.50
29 30.47 29.75 29.00
30 32.57 29.67 28.74

Table 43: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.13 0.5 -0.31 2.87
Jan/17 0.17 0.5 -0.56 1.03
Jan/18 0.16 0.5 -0.60 0.30

Figure 149: Zions Bancorporation Market
Implied Volatility (%/100) - Call - 14/04/16
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Figure 150: Zions Bancorporation Heston
Implied Volatility (%/100) - Call - 14/04/16

Figure 151: Zions Bancorporation SABR
Implied Volatility (%/100) - Call - 14/04/16

Figure 152: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Call -

14/04/16

We can see for the call the market implied volatility
(Figure 149) stays at about 30% when the call is out-

of-the-money, and this is best capture by the Heston
model. Moreover, both the Heston (Figure 150) and
SABR (Figure 151) model show skews that are not
present in the market volatility.

Lastly, the Monte Carlo (Figure 152) methodology
once again underestimates volatility at all strikes and
maturities, failing to show the spike when the call is
in-the-money with a few months to maturity.

Figure 153: Zions Bancorporation Heston -
Market price di↵erential ($) - Call - 14/04/16

Figure 154: Zions Bancorporation SABR -
Market price di↵erential ($) - Call - 14/04/16
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Figure 155: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Call -

14/04/16

When comparing the three models for the pricing of
the call (Figures 153 to 155), the Monte Carlo model
is the clear winner. Indeed, its mispricings in absolute
value do not pass the $0.5 figure, while for the Heston
model there are far bigger mispricings especially when
the call is in-the-money.

For the SABR model, the mispricings are over $0.6
for almost all strikes and maturities and pass the $1.5
figure when the option has 2 years to maturity and is
in-the-money.

Table 44: Zions Bancorporation Mean of
Implied Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
15 52.93 47.61 40.24
18 46.34 40.33 35.26
20 40.83 36.92 34.75
23 34.50 33.67 31.73
25 32.02 31.11 28.47
27 24.03 31.87 30.82

Table 45: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.15 0.5 -1.00 0.94
Jan/17 0.15 0.5 0.05 1.14
Jan/18 0.14 0.5 0.01 0.71

Figure 156: Zions Bancorporation Market
Implied Volatility (%/100) - Put - 14/04/16

Figure 157: Zions Bancorporation Heston
Implied Volatility (%/100) - Put - 14/04/16

Figure 158: Zions Bancorporation SABR
Implied Volatility (%/100) - Put - 14/04/16
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Figure 159: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Put -

14/04/16

When analysing the put, we can see that both the
Heston (Figure 157) and SABR (Figure 159) model do
a discrete job at estimating implied volatility. Indeed,
they show the skew for the option at all maturities and
manage to capture the spike in volatility when the put
is far out-of-the-money with a few months to maturity.

The Monte Carlo model (Figure 159), on the other
hand, fails once again to show proper implied volatil-
ities by underestimating them at all strikes and ma-
turities and by not showing the skews for the various
maturities.

Figure 160: Zions Bancorporation Heston -
Market price di↵erential ($) - Put - 14/04/16

Figure 161: Zions Bancorporation SABR -
Market price di↵erential ($) - Put - 14/04/16

Figure 162: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Put -

14/04/16

In terms of the price di↵erentials (Figures 160 to
162), we can see that the SABR model is the clear
winner. Indeed, its di↵erentials do not go above $0.4
in absolute value, while for the Heston model greater
di↵erentials are seen when the put is at-the-money.
The Monte Carlo methodology compares similarly

to the performance of the Heston model by underes-
timating the price of the put by almost $1 when the
option is at-the-money.

8.4.4 Underlying appreciation between 1%
and 5%

For this analysis the averaged implied volatilities
have been found after retrieving them from stock price
appreciations of respectively 1.23% occurred on March
30th 2016 and of 1.31% on April 6th 2016. For the
actual market data, the prices and implied volatilities
of calls and puts have been taken after the stock as
increased by 1.07% on April 11th 2016.
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Tables 46 to 49 show the respective mean of implied
volatilities and SABR calibrated parameters for call
and put options related to this specific movement in
the underlying.

Table 46: Zions Bancorporation Mean of
Implied Volatilities (%) - Call

Jul/16 Jan/17 Jan/18
22 54.49 43.00 36.50
23 49.59 35.63 38.50
24 31.74 37.12 34.94
25 34.94 38.62 31.38
26 29.96 34.98 30.63
27 30.13 31.34 29.88
28 32.25 30.50 30.25
29 29.86 30.00 30.75
30 33.04 29.79 31.43

Table 47: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
Jul/16 0.20 0.5 -0.78 4.01
Jan/17 0.19 0.5 -0.70 0.98
Jan/18 0.14 0.5 -0.47 1.46

Figure 163: Zions Bancorporation Market
Implied Volatility (%/100) - Call - 11/04/16

Figure 164: Zions Bancorporation Heston
Implied Volatility (%/100) - Call - 11/04/16

Figure 165: Zions Bancorporation SABR
Implied Volatility (%/100) - Call - 11/04/16

Figure 166: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Call -

11/04/16

In terms of implied volatilities for the call options
(Figures 163 to 166), both the Heston and SABR
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model to a discrete job: the both correctly estimates
the implied volatilities for all strikes and maturities,
but they both fail to see the spike in volatility when
the option is in-the-money with a few months to ma-
turity.

The Monte Carlo process once again fails to correctly
measure implied volatility, underestimating it.

Figure 167: Zions Bancorporation Heston -
Market price di↵erential ($) - Call - 11/04/16

Figure 168: Zions Bancorporation SABR -
Market price di↵erential ($) - Call - 11/04/16

Figure 169: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Call -

11/04/16

When pricing the call (Figures 167 to 169), the He-
ston model prices it correctly when the option is out-
of-the-money, and overestimates it otherwise by about
$0.3.

The SABR model portrays the same price di↵eren-
tials as the Heston model, except that it overprices the
call by about $0.2 when the option is out-of-the-money
and by about $0.7 when it is in-the-money.

The Monte Carlo methodology underprices the op-
tion at all strikes and maturities by about $0.4, and by
over $1 when it has a few months to maturity and is
far in-the-money.

Therefore, the Heston model is the winner for this
particular case.

Let us now finally see how the three construction
methodologies have performed with respect to the put
option:

Table 48: Zions Bancorporation Mean of
Implied Volatilities (%) - Put

Jul/16 Jan/17 Jan/18
15 55.08 48.88 40.53
18 44.19 39.87 36.61
20 39.53 35.44 35.78
23 33.99 33.83 30.96
25 29.18 32.26 28.50
27 25.86 26.25 30.94

Table 49: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
Jul/16 0.15 0.5 -0.67 1.19
Jan/17 0.15 0.5 -0.62 0.78
Jan/18 0.14 0.5 -0.20 0.65
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Figure 170: Zions Bancorporation Market
Implied Volatility (%/100) - Put - 11/04/16

Figure 171: Zions Bancorporation Heston
Implied Volatility (%/100) - Put - 11/04/16

Figure 172: Zions Bancorporation SABR
Implied Volatility (%/100) - Put - 11/04/16

Figure 173: Zions Bancorporation Monte
Carlo Implied Volatility (%/100) - Put -

11/04/16

In terms of estimating implied volatility (Figures
170 to 173), both the Heston and SABR model do a
great job. Even though they to not manage to capture
the various small bumps shown by the market implied
volatility surface, they show the right average levels of
implied volatilities for the various strikes and maturi-
ties.

The Monte Carlo model instead underestimates
volatility greatly at all strikes and maturities, espe-
cially when the put has two years to maturity.

Figure 174: Zions Bancorporation Heston -
Market price di↵erential ($) - Put - 11/04/16
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Figure 175: Zions Bancorporation SABR -
Market price di↵erential ($) - Put - 11/04/16

Figure 176: Zions Bancorporation Monte
Carlo - Market price di↵erential ($) - Put -

11/04/16

When comparing the three models with respect to
the pricing of the put (Figures 174 to 176), we can
see that the three are relatively more precise to price
out-of-the-money puts, with mispricings almost $0 for
the Heston and SABR models and not over $0.2 in
absolute value for the Monte Carlo method.

When the put is in-the-money, the Heston model
underprices it all the way down to $1.5 for puts with
two years to maturity, whereas the SABR model over-
prices them up to $0.4 and the Monte Carlo method
underprices them between an absolute value of $0.2
and $0.8.

Hence, the SABR construction methodology is the
most precise in pricing the put for this particular in-
stance.

8.5 Google

Google is a large-cap US technology firm ($504.9 bil-
lion220) with headquarters in Mountain View, Califor-
nia, and employs about 62000 people221.
It has been chosen as a validate comparable company

for this study because there is su�cient data available
on the Internet concerning its option prices and implied
volatilities (all of the following results are based on
strikes, maturities, market prices and implied volatili-
ties found at the following footnote222). Moreover, the
way Google should be viewed di↵erent from Citigroup
is exclusively in the sector it operates in (Information
Technology vs. Financial Services).
A dividend of $0 per share223 has been accounted

for in the various calculations that follow
Let us now see the di↵erences in implied volatilities

between the three construction methodologies.

8.5.1 Underlying depreciation between 5%
and 1%

In this specific instance the average implied volatili-
ties used in the Heston and SABR models correspond
to price decreases in the underlying of 1.005% and
1.65% occurred respectively on April 5th 2016 and
April 19th 2016. The market data has been retrieved
after a stock depreciation of 2.08% occurred on closing
of business April 27th 2016. Tables 50 to 53 show re-
spectively the starting implied volatilities and SABR
parameters used for this analysis.
Let us firstly see how the three models have per-

formed with respect to the call option:

Table 50: Google Mean of Implied Volatilities
(%) - Call

May/16 Jun/16 Jan/17 Jan/18
700 31.11 29.48 27.15 28.58
710 38.02 30.25 29.62 28.23
720 29.47 26.40 27.83 28.14
730 29.12 25.82 27.91 27.08
740 28.46 25.44 26.88 28.10
750 27.98 24.88 25.91 27.47
760 27.34 24.36 25.45 26.82
770 28.13 24.02 25.86 27.22
780 26.44 23.51 24.98 26.08
790 25.91 23.18 26.56 25.84
800 25.40 22.91 24.79 26.39

Table 51: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.86 0.5 -0.66 2.40
Jun/16 0.75 0.5 -0.64 2.36
Jan/17 0.73 0.5 -0.48 1.03
Jan/18 0.73 0.5 -0.43 0.64

220http://finance.yahoo.com/q?s=GOOG
221http://finance.yahoo.com/q/pr?s=GOOG+Profile
222http://finance.yahoo.com/q/op?s=GOOG+Options
223http://finance.yahoo.com/q?s=GOOG
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Figure 177: Google Market Implied Volatility
(%/100) - Call - 26/04/16

Figure 178: Google Heston Implied Volatility
(%/100) - Call - 26/04/16

Figure 179: Google SABR Implied Volatility
(%/100) - Call - 26/04/16

Figure 180: Google Monte Carlo Implied
Volatility (%/100) - Call - 26/04/16

We can see that any of the three models is quite poor
at approximating the implied volatility portrayed by
the market (Figure 177). Hence, we will try to pick
the less-worse model out of the three. Heston model-
wise (Figure 178), it fails to portray the smiles at the
various maturities and overestimates implied volatility
for short-dated options. The same conclusions can be
said for the SABR model (Figure 179). Both method-
ologies show skews instead of smiles.

The Monte Carlo process (Figure 180) does not show
neither smiles nor skews and overestimates implied
volatility for very short-dated options and does the op-
posite for longer-dated ones.

Figure 181: Google Heston - Market price
di↵erential ($) - Call - 26/04/16
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Figure 182: Google SABR - Market price
di↵erential ($) - Call - 26/04/16

Figure 183: Google Monte Carlo - Market
price di↵erential ($) - Call - 26/04/16

When analysing the price di↵erentials, we can see
that the Heston model (Figure 181) overestimates the
call price when the maturities are short to one year
by about $15, while it underestimates the price of the
options for a two-year maturity by about $10.

The SABRmodel (Figure 182) is slightly more stable
since its di↵erentials almost always overestimate the
call price between $15 and $4.

But it is the Monte Carlo model (Figure 183) that is
even more precise than the other two, having smaller
price di↵erentials (up to $5 of overestimations for short
to medium maturities and $10 of underestimation for
the option having two years to maturity).

Table 52: Google Mean of Implied Volatilities
(%) - Put

May/16 Jun/16 Jan/17 Jan/18
640 33.78 28.13 27.17 26.48
650 33.13 28.88 27.26 26.23
660 32.55 28.37 26.65 26.42
670 31.83 25.75 26.19 26.23
680 31.43 26.64 25.94 25.81
690 30.88 26.95 26.08 25.94
700 30.26 26.59 26.05 25.51
710 29.73 25.97 25.70 25.83
720 29.32 24.39 24.98 25.32
730 28.73 24.30 25.00 24.85
740 28.27 24.67 24.49 25.03

Table 53: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.79 0.5 -0.57 1.02
Jun/16 0.68 0.5 -0.82 0.56
Jan/17 0.68 0.5 -0.76 0.30
Jan/18 0.68 0.5 -0.58 0.14

Figure 184: Google Market Implied Volatility
(%/100) - Put - 26/04/16

Figure 185: Google Heston Implied Volatility
(%/100) - Put - 26/04/16
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Figure 186: Google SABR Implied Volatility
(%/100) - Put - 26/04/16

Figure 187: Google Monte Carlo Implied
Volatility (%/100) - Put - 26/04/16

We can see that, except for an obvious underesti-
mation of implied volatility by Yahoo! Finance, the
market implied volatility for the put option (Figure
184) shows levels around the 20%-25% and presents
neither skews nor smiles.

The Heston model (Figure 185) correctly shows the
fact that there is no smile nor no skews, but it shows
that implied volatility is decreasing as a function of
time to maturity and overestimates it for all strikes
and maturities.

The SABR model (Figure 186) also overestimates
implied volatility at all strikes and times to maturity,
but less so, and it shows a relatively flat surface for
options having from a few months to maturity to two
years to maturity.

The Monte Carlo model (Figure 187) correctly cal-
ibrates the implied volatilities of the option having a
few months to maturity, and overestimates the other
ones. It does not portray neither smiles nor skews,
which is a good aspect of such analysis.

Figure 188: Google Heston - Market price
di↵erential ($) - Put - 26/04/16

Figure 189: Google SABR - Market price
di↵erential ($) - Put - 26/04/16

Figure 190: Google Monte Carlo - Market
price di↵erential ($) - Put - 26/04/16

In terms of price di↵erentials, the Heston model
(Figure 188) is more precise for the put being out-
of-the-money, with di↵erentials being around the $15
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figure. As the option becomes more and more in-the-
money, the overestimation increases up to $30.

The SABR model (Figure 189) shows a similar pat-
tern to that of the Heston model, although the over-
estimations are lower (around $8 for out-of-the-money
puts and of about $15 for in-the-money puts).

The Monte Carlo process (Figure 190), instead,
prices correctly the puts having a few months to matu-
rity and slightly overestimates those with one month
to maturity (about $5 extra given to the prices) as
well as those with one year to maturity (about $5 of
overestimation), while for the puts having two years to
maturity the model underestimates prices by about $5.
Lastly, the model is more precise for out-of-the-money
puts than for in-the-money ones.

So, we can say that the SABR and Monte Carlo
models perform equally in this specific circumstance.

8.5.2 Underlying depreciation between 1%
and 0%

For this study, the average implied volatilities for
calls and puts have been retrieved after the stock has
depreciated by respectively 0.30% and 0.74% on March
15th 2016 and March 31st respectively. The actual
market data to which the Heston, SABR and Monte
Carlo models will be compared to has been gotten af-
ter a stock depreciation of 0.62% occurred on April 4th

2016.

Tables 54 to 57 show the average implied volatilities
and SABR parameters respectively for calls and puts.

Table 54: Google Mean of Implied Volatilities
(%) - Call

May/16 Jun/16 Jan/17 Jan/18
700 28.90 27.15 27.35 28.13
710 28.06 26.27 27.16 29.92
720 27.48 25.85 26.84 27.73
730 27.02 25.31 26.62 27.10
740 26.46 24.81 26.36 27.41
750 26.03 24.43 26.11 27.21
760 25.54 24.01 25.86 26.66
770 25.29 23.60 25.85 26.85
780 24.83 23.20 25.62 26.68
790 24.26 22.86 25.42 26.44
800 24.07 22.52 25.13 26.44

Table 55: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.71 0.5 -0.48 1.25
Jun/16 0.66 0.5 -0.47 1.20
Jan/17 0.71 0.5 -0.33 0.60
Jan/18 0.70 0.5 -0.16 0.69

Figure 191: Google Market Implied Volatility
(%/100) - Call - 04/04/16

Figure 192: Google Heston Implied Volatility
(%/100) - Call - 04/04/16

Figure 193: Google SABR Implied Volatility
(%/100) - Call - 04/04/16
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Figure 194: Google Monte Carlo Implied
Volatility (%/100) - Call - 04/04/16

We can see that the market implied volatility surface
(Figure 191) is quite particular, with implied volatility
levels ranging form 22% to 32% and bumps in volatility
for the same maturity. Thus, there is an absence of
either smiles or skews.

However, the Heston (Figure 192) and SABR (Fig-
ure 193) models portray skews for all maturities. The
SABR model also shows, correctly, that when the call
has a few months to maturity implied volatility levels
are lower than for other maturities.

The Monte Carlo process (Figure 194), instead, over-
estimates implied volatilities for the call having one
month to maturity, and does the opposite for the call
having a few months to maturity.

Figure 195: Google Heston - Market price
di↵erential ($) - Call - 04/04/16

Figure 196: Google SABR - Market price
di↵erential ($) - Call - 04/04/16

Figure 197: Google Monte Carlo - Market
price di↵erential ($) - Call - 04/04/16

And as well as in the previous analysis, the SABR
model is the best one at approximating prices for the
call option (Figure 196). Indeed, its mispricings are
relatively low, not passing the $4 mark for the call
having up to one year to maturity and not over the
$10 mark for the call having two years to maturity.

While the Heston model (Figure 195) is quite precise
for very short maturities, it underprices the call greatly
for longer ones, arriving to pass the -$30 mark.

The Monte Carlo process (Figure 197) is also quite
precise for very short maturities but it also underes-
timates the price of the call for longer ones, with the
mispricings arriving to almost -$20.
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Table 56: Google Mean of Implied Volatilities
(%) - Put

May/16 Jun/16 Jan/17 Jan/18
640 31.09 28.73 27.44 27.23
650 30.58 28.21 28.42 27.18
660 29.95 27.79 26.97 27.02
670 29.48 27.33 27.61 26.93
680 28.95 26.92 26.36 26.59
690 28.33 26.61 26.13 26.41
700 27.91 26.02 25.88 26.15
710 27.49 25.55 25.65 26.00
720 26.99 25.18 25.52 26.60
730 26.55 24.74 25.33 25.67
740 26.08 24.32 25.12 25.45

Table 57: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.70 0.5 -0.44 1.02
Jun/16 0.66 0.5 -0.51 0.82
Jan/17 0.65 0.5 -0.17 0.85
Jan/18 0.69 0.5 -0.24 0.34

Figure 198: Google Market Implied Volatility
(%/100) - Put - 04/04/16

Figure 199: Google Heston Implied Volatility
(%/100) - Put - 04/04/16

Figure 200: Google SABR Implied Volatility
(%/100) - Put - 04/04/16

Figure 201: Google Monte Carlo Implied
Volatility (%/100) - Put - 04/04/16

As we can see for the put option, the SABR model
(Figure 200) is the best model to approximate the
implied volatility shown by the market. Indeed, the
higher volatility levels when the put has one month to
maturity are captured perfectly, as well as the imper-
fect skews at the various maturities.

The Heston model (Figure 199) does a discrete job
as well at underlining that implied volatility is highest
for the shorter maturity. However, it fails to show the
negative jump in implied volatility from the very first
maturity to the second one.

The Monte Carlo process (Figure 201), once again,
fails to portray the skews for the various maturities.
However, it shows a negative jump in implied volatility
from the one-month maturity put to the few-months
maturity one, although the magnitude is bigger than
what is actually shown in the market data.
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Figure 202: Google Heston - Market price
di↵erential ($) - Put - 04/04/16

Figure 203: Google SABR - Market price
di↵erential ($) - Put - 04/04/16

Figure 204: Google Monte Carlo - Market
price di↵erential ($) - Put - 04/04/16

Also in terms of price di↵erentials the SABR model
(Figure 203) is the one the most closely approaches the

prices shown by the market. Indeed, the price di↵er-
entials for such model do not go beyond $4 for short
maturities and $5 for longer ones.

For the Heston and Monte Carlo models(Figures 202
and 204 respectively), instead, the di↵erentials arrive
to underpricings of the options of $15 and $10 respec-
tively.

It must be underlined that the three models are quite
precise to price the put with one month to maturity.

8.5.3 Underlying appreciation between 0%
and 1%

In this instance the underlying appreciations are of
0.50% and 0.77% occurred on March 14th 2016 and
March 30th 2016 respectively, and it has been through
them that the implied volatilities averages have been
taken. The actual market data, retrieved on April
1st 2016, has been recorded as a stock appreciation
of 0.67%. Tables 58 to 61 show the average implied
volatilities and SABR calibrated parameters for calls
and puts respectively.

Table 58: Google Mean of Implied Volatilities
(%) - Call

May/16 Jun/16 Jan/17 Jan/18
700 29.49 27.54 27.65 28.24
710 28.98 26.88 27.47 28.11
720 27.64 25.95 27.17 27.95
730 27.09 25.45 26.88 26.80
740 26.54 25.01 26.60 27.58
750 25.99 24.55 26.34 27.30
760 25.47 24.06 25.99 26.36
770 25.07 23.62 25.81 27.02
780 24.63 23.18 25.37 26.47
790 24.24 22.81 25.08 26.30
800 23.82 22.45 25.11 26.13

Table 59: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.70 0.5 -0.42 1.71
Jun/16 0.65 0.5 -0.46 1.37
Jan/17 0.71 0.5 -0.45 0.62
Jan/18 0.70 0.5 -0.23 0.73
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Figure 205: Google Market Implied Volatility
(%/100) - Call - 01/04/16

Figure 206: Google Heston Implied Volatility
(%/100) - Call - 01/04/16

Figure 207: Google SABR Implied Volatility
(%/100) - Call - 01/04/16

Figure 208: Google Monte Carlo Implied
Volatility (%/100) - Call - 01/04/16

We can see that the SABR model (Figure 207) is
the one that most closely matches the market implied
volatility (Figure 205). It shows skews for all ma-
turities and also shows the negative jump in implied
volatilities form one-month-to-maturity puts to few-
months-to-maturity ones. It also calibrates the levels
of implied volatility at all levels.

Th Heston model (Figure 206) calibrates the implied
volatilities slightly underestimating them at all levels,
and failing to show the bump in implied volatility for
middle maturities.

The Monte Carlo process (Figure 208) shows such
negative jump, but the magnitude is bigger than what
shown by the market. It also underestimates implied
volatility for long maturities and fails to show the
skews according to the various maturities.

Figure 209: Google Heston - Market price
di↵erential ($) - Call - 01/04/16
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Figure 210: Google SABR - Market price
di↵erential ($) - Call - 01/04/16

Figure 211: Google Monte Carlo - Market
price di↵erential ($) - Call - 01/04/16

Also in terms of pricing the call (Figures 209 to 211),
the SABR model is the one that dominates. Indeed,
while the three construction methodologies are quite
precise for the call having form one month to a few
months to maturity, for longer times to maturity the
Heston model and Monte Carlo process underestimate
the price of the call by respectively $30 and $15, while
the SABR model overprices them by only up to $12.

Let us now see how the three models compare with
respect to the put option:

Table 60: Google Mean of Implied Volatilities
(%) - Put

May/16 Jun/16 Jan/17 Jan/18
640 31.22 28.69 27.26 27.34
650 30.47 28.30 28.70 27.56
660 29.65 27.76 28.22 27.41
670 29.26 27.25 27.83 27.18
680 28.96 26.60 26.13 26.46
690 28.53 26.08 25.86 26.31
700 27.77 25.77 26.06 26.20
710 27.35 25.43 25.83 25.93
720 26.70 25.06 25.56 26.92
730 26.34 24.55 25.16 25.62
740 25.94 24.05 25.00 25.85

Table 61: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.69 0.5 -0.43 1.06
Jun/16 0.64 0.5 -0.38 0.99
Jan/17 0.66 0.5 -0.40 0.69
Jan/18 0.66 0.5 0.00 0.70

Figure 212: Google Market Implied Volatility
(%/100) - Put - 01/04/16

Figure 213: Google Heston Implied Volatility
(%/100) - Put - 01/04/16
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Figure 214: Google SABR Implied Volatility
(%/100) - Put - 01/04/16

Figure 215: Google Monte Carlo Implied
Volatility (%/100) - Put - 01/04/16

Once again, the SABR model (Figure 214) is the
only one that correctly calibrates implied volatility lev-
els at all strikes and maturities, managing to show
the skews for the various maturities and the spike in
volatility for the put with one month to maturity.

The Heston model (Figure 213) does a discrete job
as well, but it fails to show the spike in volatility for
the one-month-to-maturity put and slightly underesti-
mates the implied volatility levels for longer maturities.

The Monte Carlo methodology (Figure 215) overes-
timates implied volatility for the put having one month
to maturity and, once again, does not portray the
skews for the various maturities.

Figure 216: Google Heston - Market price
di↵erential ($) - Put - 01/04/16

Figure 217: Google SABR - Market price
di↵erential ($) - Put - 01/04/16

Figure 218: Google Monte Carlo - Market
price di↵erential ($) - Put - 01/04/16

For the pricing of the put (Figures 216 to 218), the
SABR model matches prices the closest to the market
data. Indeed, the mispricings only arrive up to -$4
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for middle maturities, while the Heston model and the
Monte Carlo process have mispricings that reach over
the -$15 figure for very long maturities.

It must be underlined that the three models are quite
precise for the put having one month to maturity.

8.5.4 Underlying appreciation between 1%
and 5%

Unfortunately, between March 2016 and April 2016,
which was the period during which the empirical exper-
imentation has been carried out, the stock of Google
has moved above 1% only twice, not guaranteeing the
full spectrum of analysis of implied volatilities and op-
tion price calibrations. Thus, there will be no further
examination for this specific instance.

8.6 Exxon Mobil

Exxon Mobil is a large market cap ($344 billion224)
US enterprise. It is involved in the Oil & Gas business
through the production of crude Oil & Natural Gas
globally. Headquartered in Irving, Texas, it employs
73500 people225.

Exxon Mobil has been chosen as a validate candidate
for this study because of two major reasons: its vastly
greater market cap than that of Citigroup and because
of the di↵erence in sector specialisation of the two com-
panies. Therefore, the way Exxon Mobil should be
viewed di↵erently from Citigroup is in the two char-
acteristics listed previously. All of the information on
strikes, maturities, market prices and implied volatili-
ties can be found at the following footnote226.

A dividend of $2.92 per share227 has been accounted
for in the calculations of implied volatilities and option
prices.

8.6.1 Underlying depreciation between 5%
and 1%

For this study, the averaged implied volatilities have
been extracted from market data recorded after stock
depreciations of 1.10% and 1.14% recorded respectively
on March 31st 2016 and April 5th 2016. The actual
market data used to compare to the three models has
been retrieved after a stock depreciation of 1.13% oc-
curred on April 7th 2016.

Tables 62 to 65 show the average implied volatilities
and SABR calibrated parameters that have been used
to estimate both implied volatilities and option prices.

224http://finance.yahoo.com/q?s=XOM
225http://finance.yahoo.com/q/pr?s=XOM+Profile
226http://finance.yahoo.com/q/op?s=XOM+Options
227http://finance.yahoo.com/q?s=XOM

Table 62: Exxon Mobil Mean of Implied
Volatilities (%) - Call

May/16 Jul/16 Jan/17 Jan/18
75 28.75 21.41 20.32 18.55
77.5 23.63 22.34 19.59 19.06
80 21.48 18.97 18.90 18.30
82.5 18.97 17.83 18.34 17.46
85 17.45 16.83 17.77 17.05
87.5 16.38 16.09 17.10 16.75
90 15.87 15.62 16.54 16.17
92.5 16.70 15.35 16.52 16.11
95 17.73 15.44 16.25 16.03

Table 63: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.17 0.5 -0.62 2.44
Jul/16 0.16 0.5 -0.56 1.27
Jan/17 0.16 0.5 -0.48 0.65
Jan/18 0.16 0.5 -0.52 0.37

Figure 219: Exxon Mobil Market Implied
Volatility (%/100) - Call - 07/04/16

Figure 220: Exxon Mobil Heston Implied
Volatility (%/100) - Call - 07/04/16
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Figure 221: Exxon Mobil SABR Implied
Volatility (%/100) - Call - 07/04/16

Figure 222: Exxon Mobil Monte Carlo Implied
Volatility - Call - 07/04/16

We can see, when analysing Figures 219 to 222, that
the SABR model is the one that best approaches im-
plied volatility to that shown by the market. Indeed, it
correctly shows skews for all maturities and the spike
in volatility when the call is in-the-money with a few
months to maturity.

The same can be said for the Heston model, except
for the missing out of the portrayal in spike in volatility
when the call is in-the-money with a few months to
maturity.

The Monte Carlo model overestimates the implied
volatility of the call when it has one month to maturity,
does the opposite when it has 2 months to maturity
and fails to show the skews for the various maturities,
as it has often been the case for other instances.

Figure 223: Exxon Mobil Heston - Market
price di↵erential ($) - Call - 07/04/16

Figure 224: Exxon Mobil SABR - Market
price di↵erential ($) - Call - 07/04/16

Figure 225: Exxon Mobil Monte Carlo -
Market price di↵erential ($) - Call - 07/04/16

In terms of pricing of the call (Figures 223 to 225),
the SABR model is also here the best model to use.
Indeed, the discrepancies in prices do not go over the
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absolute value of $0.8, while they reach $2 for the other
two models.

The SABR model is especially precise when the
call is out-of-the-money, as well as the Monte Carlo
method.

The Heston model, instead, is more precise when the
call is in-the-money.

Let us now observe how the three models have per-
formed with respect of the put:

Table 64: Exxon Mobil Mean of Implied
Volatilities (%) - Put

May/16 Jul/16 Jan/17 Jan/18
70 31.18 26.88 27.45 25.89
72.5 29.14 26.30 26.49 25.39
75 27.31 24.83 25.57 24.25
77.5 25.67 23.45 24.73 24.18
80 24.15 22.21 23.93 23.88
82.5 23.02 21.10 23.38 22.80
85 22.77 20.43 23.04 22.16

Table 65: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.20 0.5 -0.21 1.87
Jul/16 0.19 0.5 -0.63 0.90
Jan/17 0.20 0.5 -0.22 0.95
Jan/18 0.21 0.5 -0.79 0.33

Figure 226: Exxon Mobil Market Implied
Volatility (%/100) - Put - 07/04/16

Figure 227: Exxon Mobil Heston Implied
Volatility (%/100) - Put - 07/04/16

Figure 228: Exxon Mobil SABR Implied
Volatility (%/100) - Put - 07/04/16

Figure 229: Exxon Mobil Monte Carlo Implied
Volatility (%/100) - Put - 07/04/16

As the Figures 226 to 229 show, the SABR model is
by far the closest one in terms of portraying implied
volatility that approaches the market data. It shows
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the smile when the put has one month to maturity and
the skews for other maturities. Moreover, the values
of implied volatility are calibrated correctly.

The Heston model, instead, overestimates the im-
plied volatilities of the put for long maturities and does
not show the smile when the option has one month to
maturity.

The Monte Carlo model fails to show the skews and
smiles respectively for long and short maturities, over-
estimates volatility when the put has one one month to
maturity, and does the opposite when the option has
two months to maturity.

Figure 230: Exxon Mobil Heston - Market
price di↵erential ($) - Put - 07/04/16

Figure 231: Exxon Mobil SABR - Market
price di↵erential ($) - Put - 07/04/16

Figure 232: Exxon Mobil Monte Carlo -
Market price di↵erential ($) - Put - 07/04/16

Pricing-wise (Figures 230 to 232) the SABR model
dominates the other two. Indeed, the biggest di↵eren-
tials are of $0.4 when the put is at-the-money with two
years to maturity.

For the Heston model, as the option becomes more
long-dated, the discrepancy in prices augments, reach-
ing almost $6.

For the Monte Carlo model there is an underpric-
ing of the put of $1 when the option has 2 months
to maturity, while for the rest of maturities it is quite
precise.

8.6.2 Underlying depreciation between 1%
and 0%

The implied volatility averages have been taken af-
ter two stocks depreciations of respectively 0.69% (on
March 21st 2016) and 0.01% (on March 30th 2016).
The actual market implied volatilities and prices have
been retrieved after a stock depreciation of 0.75% oc-
curred on April 1st 2016.

Tables 66 to 69 show the mean implied volatilities
and calibrated SABR parameters used to estimate the
new implied volatilities and option prices by the three
models.

Table 66: Exxon Mobil Mean of Implied
Volatilities (%) - Call

May/16 Jul/16 Jan/17 Jan/18
75 20.58 21.38 19.24 18.28
77.5 22.78 19.53 18.50 17.90
80 20.83 18.73 17.87 17.78
82.5 18.87 17.34 17.23 16.82
85 17.04 16.17 16.64 16.28
87.5 15.85 15.36 16.01 16.28
90 15.20 14.71 15.43 15.73
92.5 14.82 14.19 15.00 15.62
95 15.70 14.13 14.85 15.54
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Table 67: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.17 0.5 -0.60 1.15
Jul/16 0.15 0.5 -0.59 1.11
Jan/17 0.15 0.5 -0.56 0.58
Jan/18 0.15 0.5 -0.36 0.52

Figure 233: Exxon Mobil Market Implied
Volatility (%/100) - Call - 01/04/16

Figure 234: Exxon Mobil Heston Implied
Volatility (%/100) - Call - 01/04/16

Figure 235: Exxon Mobil SABR Implied
Volatility (%/100) - Call - 01/04/16

Figure 236: Exxon Mobil Monte Carlo Implied
Volatility (%/100) - Call - 01/04/16

As we can see from Figures 233 to 236, both the He-
ston and SABR models do a discrete job in portraying
the implied volatility when compared to the market
data.

The SABR model shows the spike in volatility when
the call is in-the-money with one month to maturity
but does not show the slight smile for the same ma-
turity, while vice-versa can be said for the Heston
model. Thus, both models calibrate the levels of im-
plied volatilities for almost all strikes and maturities.

The Monte Carlo method instead overestimates im-
plied volatility for all strikes and maturities and fails to
show the smiles and skews respectively for short dates
and longer ones.
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Figure 237: Exxon Mobil Heston - Market
price di↵erential ($) - Call - 01/04/16

Figure 238: Exxon Mobil SABR - Market
price di↵erential ($) - Call - 01/04/16

Figure 239: Exxon Mobil Monte Carlo -
Market price di↵erential ($) - Call - 01/04/16

However, in terms of price di↵erential (Figures 237
to 239), the SABR model is superior to the other two.
Indeed, the discrepancies in prices do not go over an

absolute value of $0.4, while for the Heston model the
discrepancies reach the -$1.5 figure and for the Monte
Carlo process the overpricing reaches the $2 figure.

Lastly, it can be noticed that the three models are
quite precise at pricing the call when it has one month
to maturity.

Table 68: Exxon Mobil Mean of Implied
Volatilities (%) - Put

May/16 Jul/16 Jan/17 Jan/18
70 30.35 27.61 26.73 25.50
72.5 28.55 25.97 25.84 24.91
75 26.76 24.33 24.94 24.08
77.5 24.92 23.03 24.06 23.75
80 23.28 21.72 23.15 23.50
82.5 21.99 20.51 22.51 22.94
85 21.36 19.85 21.83 22.62

Table 69: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.31 1.70
Jul/16 0.18 0.5 -0.34 1.38
Jan/17 0.20 0.5 -0.47 0.72
Jan/18 0.21 0.5 -0.66 0.26

Figure 240: Exxon Mobil Market Implied
Volatility (%/100) - Put - 01/04/16
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Figure 241: Exxon Mobil Heston Implied
Volatility (%/100) - Put - 01/04/16

Figure 242: Exxon Mobil SABR Implied
Volatility (%/100) - Put - 01/04/16

Figure 243: Exxon Mobil Monte Carlo Implied
Volatility (%/100) - Put - 01/04/16

Once again, the shape of the market implied volatil-
ity surface (Figure 240) is best approximated by the
SABR model (Figure 242). It calibrates volatilities

correctly at all strikes and maturities and shows the
skews correctly for all maturities.

The Heston model (Figure 241) does a great job as
well, but fails to show that actual implied volatility is
far higher for the put having one month to maturity
than for other maturities.

The Monte Carlo process (Figure 243), while it is
precise for the put having two years to maturity, it
overestimates implied volatility for shorter maturities
and fails to show the skews for each single maturity.

Figure 244: Exxon Mobil Heston - Market
price di↵erential ($) - Put - 01/04/16

Figure 245: Exxon Mobil SABR - Market
price di↵erential ($) - Put - 01/04/16
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Figure 246: Exxon Mobil Monte Carlo -
Market price di↵erential ($) - Put - 01/04/16

In terms of pricing the put (Figures 244 to 246),
the SABR model is the most precise. Indeed, the dis-
crepancies do not go beyond the $0.7 figure, while for
the Heston model they arrive to $1 overpricing and for
Monte Carlo they pricing di↵erence ranges form -$1 to
+$1.

It is interesting to notice that both the SABR and
Heston model lose precision as the put has a greater
time to maturity.

8.6.3 Underlying appreciation between 0%
and 1%

In this case the two stock appreciations that have
been taken into account to find the average implied
volatilities to use for the SABR and Heston model are
the following: 0.50% on March 15th 2016 and 0.24%
occurred on April 4th 2016. The actual market data
has been retrieved after a stock appreciation of 0.13%
that happened on April 11th 2016. The mean of im-
plied volatilities with the respective SABR calibrated
parameters can be seen in Tables 70 to 73.

Table 70: Exxon Mobil Mean of Implied
Volatilities (%) - Call

May/16 Jul/16 Jan/17 Jan/18
75 24.50 21.50 20.76 19.02
77.5 22.69 20.54 19.92 19.40
80 20.91 19.03 19.21 18.69
82.5 19.17 18.08 18.33 18.20
85 17.81 17.04 17.62 17.73
87.5 16.65 16.25 17.32 17.56
90 15.81 15.62 16.97 17.01
92.5 16.36 15.22 16.58 16.77
95 17.19 15.74 16.23 16.50

Table 71: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.17 0.5 -0.51 1.75
Jul/16 0.16 0.5 -0.49 1.16
Jan/17 0.16 0.5 -0.43 0.76
Jan/18 0.17 0.5 -0.80 0.20

Figure 247: Exxon Mobil Market Implied
Volatility (%/100) - Call - 11/04/16

Figure 248: Exxon Mobil Heston Implied
Volatility (%/100) - Call - 11/04/16
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Figure 249: Exxon Mobil SABR Implied
Volatility (%/100) - Call - 11/04/16

Figure 250: Exxon Mobil Monte Carlo Implied
Volatility (%/100) - Call - 11/04/16

In terms of portraying implied volatility for the call
(Figures 247 to 250), both the Heston and SABR
model perform quite well, calibrating the implied
volatilities correctly for almost all maturities and
strikes and showing the smile for the one month to
maturity call and skews for the other maturities.

The Monte Carlo methodology, on the other hand,
overestimates implied volatility at all maturities and
strikes, failing additionally to show the smiles and
skews according to time to maturity.

Figure 251: Exxon Mobil Heston - Market
price di↵erential ($) - Call - 11/04/16

Figure 252: Exxon Mobil SABR - Market
price di↵erential ($) - Call - 11/04/16

Figure 253: Exxon Mobil Monte Carlo -
Market price di↵erential ($) - Call - 11/04/16

In terms of pricing the option (Figures 251 to 253),
the Heston model is the one that dominates the com-
parison. Indeed, the discrepancies in prices are almost
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null for the one-month to one-year maturities, and for
the two-year maturity they approach the negative $1.5
figure. The SABR model has more and more imprecise
pricing as time to maturity increases, arriving to the
$1.4 figure for the call having two years to maturity.

While the Monte Carlo methodology is quite precise
for short maturities, the price di↵erential goes beyond
the $2 dollar figure for longer ones.

Let us now see how the three models perform in
terms of the put option:

Table 72: Exxon Mobil Mean of Implied
Volatilities (%) - Put

May/16 Jul/16 Jan/17 Jan/18
70 30.61 28.16 27.69 26.97
72.5 28.74 27.55 27.04 26.15
75 27.02 24.97 26.07 25.23
77.5 25.50 23.75 25.03 24.51
80 24.04 22.85 24.31 24.68
82.5 23.58 21.86 23.68 24.62
85 23.40 21.41 23.10 23.68

Table 73: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.21 0.5 -0.03 1.96
Jul/16 0.19 0.5 -0.17 1.53
Jan/17 0.21 0.5 -0.39 0.76
Jan/18 0.20 0.5 0.00 0.88

Figure 254: Exxon Mobil Market Implied
Volatility (%/100) - Put - 11/04/16

Figure 255: Exxon Mobil Heston Implied
Volatility (%/100) - Put - 11/04/16

Figure 256: Exxon Mobil SABR Implied
Volatility (%/100) - Put - 11/04/16

Figure 257: Exxon Mobil Monte Carlo Implied
Volatility (%/100) - Put - 11/04/16

As Figures 254 to 257 show, the SABR model is the
ones that most closely approaches the implied volatil-
ity shown by the market data. Indeed, it shows the
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spike in volatility when the option has one month to
maturity and shows correctly the smile for the same
maturity and skews for other times to maturity.

Although the Heston model calibrates the implied
volatilities quite correctly, it fails to show the smile and
the spike in volatilities when the put has one month to
maturity.

The Monte Carlo process instead not only fails to
show smiles and skews according to maturity, but it
also overestimates it for the put having one month to
maturity.

Figure 258: Exxon Mobil Heston - Market
price di↵erential ($) - Put - 11/04/16

Figure 259: Exxon Mobil SABR - Market
price di↵erential ($) - Put - 11/04/16

Figure 260: Exxon Mobil Monte Carlo -
Market price di↵erential ($) - Put - 11/04/16

As we can, lastly, see from Figures 258 to 260, the
SABR model is the most constant one in showing the
discrepancies in prices. Indeed it is quite precise for the
put having a few months to maturity, and the di↵er-
ential goes beyond $1 for the option having two years
to maturity.
The Heston model, instead, underprices the option

greatly, arriving to an absolute value di↵erential of $2.5
when the put has two years to maturity and is in-the-
money.
Lastly, the Monte Carlo price di↵erentials range

from -$1 to +$1.5, depending on strike and maturity.

8.6.4 Underlying appreciation between 1%
and 5%

Unfortunately, throughout March 2016 and April
2016, the stock of Exxon Mobil has not moved above
1% for a su�cient number of times (at least three) to
su�ce the carrying out of the analysis. Hence, no fur-
ther examination will be carried out for this specific
underlying price movement.
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9 Attempts at capturing the dy-
namics of the implied volatil-
ity surface - 2

9.1 The evolution of the market: He-
ston, SABR and Monte Carlo im-
plied volatility surfaces - Citigroup

The following analysis comes after having retrieved
the implied volatility surface evolutions for Citigroup
options maturing on May 20th 2016, September 16th

2016, January 20th 2017 and January 19th 2018. The
analysis comes after observing the volatility surface un-
der the actual market data, the Heston model, the
SABR methodology and the Monte Carlo model for
the following dates:
- March 28th 2016
- April 4th 2016
- April 11th 2016
- April 18th 2016
- April 25th 2016
Through these data we will see how the implied

volatility surface evolves under each model and how it
has actually evolved (under the market data retrieved
at the end of each business day reported just previ-
ously).
The analysis will both explore how the actual im-

plied volatility surface evolves week after week and how
the models’ surfaces approximate the market implied
volatility surface.

9.1.1 March 28th 2016

The following data comes after an actual stock price
decrease of 0.05%. To be clear, for this specific study
we have not used the average implied volatilities, but
simply the implied volatility retrieved for another pre-
vious business day where the stock has also moved be-
tween 0% and +1%. In this case, the stock price move-
ment of been of -0.74% and it occurred on March 14th

2016. The stock price has indeed moved between -1%
and 0% only once between the commencement of this
study and March 28th 2016.
Tables 74 and 77 show the respective average implied

volatilities and SABR calibrated parameters for the
stock movement.

Table 74: Citigroup Implied Volatility Surface
(%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 46.97 40.41 36.01 36.52
40 36.57 32.86 32.20 33.41
45 29.05 28.86 29.26 30.68
50 26.86 26.32 26.67 28.74
55 28.32 24.51 24.78 26.83

Table 75: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.21 0.5 -0.63 1.93
Sep/16 0.20 0.5 -0.62 1.13
Jan/17 0.20 0.5 -0.65 0.58
Jan/18 0.21 0.5 -0.61 0.47

Let us see how the market data compares to the
three models’ implied volatility surfaces for the call
option:

Figure 261: Citigroup Market Implied
Volatility Surface (%/100) - Call - 28/03/16

Figure 262: Citigroup Heston Implied
Volatility Surface (%/100) - Call - 28/03/16
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Figure 263: Citigroup SABR Implied
Volatility Surface (%/100) - Call - 28/03/16

Figure 264: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Call - 28/03/16

For the call option we can see that the market im-
plied volatility surface (Figure 261) is best approxi-
mated by the SABR model (Figure 263). Indeed, it
manages to capture the spike in volatility when the
option is in-the-money with a few months to maturity,
as well as the smile for the option having almost two
months to maturity.

The Heston model (Figure 262) does a discrete job
as well, except that it does not capture the spike in
volatility when the call is in-the-money with a few
months to maturity.

The Monte Carlo process (Figure 264) instead fails
to show the smiles and skews for the respective ma-
turities and overestimates the implied volatility when
the call has a few months to maturity.

With regards to the analysis of the market implied
volatility surface data, we can see that there is a smile
when the option has two months to maturity and skews
for the other maturities. Hence, as the option becomes
more in-the-money implied volatility increases (with

the exception when the call has a few months to ma-
turity and is out-of-the-money).

Moreover, with the exception of when the call is very
in-the-money, the implied volatility levels are identical
for the option having two months to maturity and one
year to maturity, and such levels increase as time to
maturity increases.

It is interesting to see that out-of-the-money options,
which are the more liquid ones, have lower implied
volatility than those in-the-money.

Let us now see how the implied volatility levels com-
pare for the put option:

Table 76: Citigroup Implied Volatility Surface
- Put (%)

May/16 Sep/16 Jan/17 Jan/18
20 67.58 59.28 53.13 47.05
25 62.11 50.20 45.90 42.04
30 49.61 42.31 39.80 36.85
35 39.84 36.40 35.11 33.46
40 33.50 31.81 31.35 30.53
45 29.79 28.13 28.14 29.29

Table 77: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.21 0.5 -0.55 1.33
Sep/16 0.19 0.5 -0.40 1.06
Jan/17 0.19 0.5 -0.47 0.77
Jan/18 0.19 0.5 -0.23 0.63

Figure 265: Citigroup Market Implied
Volatility Surface (%/100) - Put - 28/03/16
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Figure 266: Citigroup Heston Implied
Volatility Surface (%/100) - Put - 28/03/16

Figure 267: Citigroup SABR Implied
Volatility Surface (%/100) - Put - 28/03/16

Figure 268: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Put - 28/03/16

For the put as well we can see that there are skews for
each maturity, but no smile this time. Both the Heston

(Figure 266) and the SABR (Figure 267) models man-
age to capture the spike in volatility when the option is
very out-of-the-money with a few months to maturity.
However, the SABR model does a better job at approx-
imating the convexity of the various curves for each
maturity than the Heston model. Lastly, both models
approximate the levels of implied volatility quite well
when compared to the actual implied volatility data.

The Monte Carlo methodology (Figure 268), in-
stead, overestimates implied volatility when the put
option has a few months to maturity, and does the op-
posite when the option has two years to maturity. It
is slightly more precise when the put is in-the-money
in terms of showing implied volatility levels.

When analysing the market implied volatility (Fig-
ure 265), the shape of the volatility surface is similar
to that of the call option, even though it must be un-
derlined the fact that the spike in volatility when the
strike price is quite low and when the option has less
than two months to maturity is much higher for the put
option (70%) than for the call option (slightly above
40%).

Moreover, there is no smile when the put option has
less than two months to maturity, and implied volatil-
ity as a function of time to maturity decreases as the
length of the option’s life augments. This is also a
diverse aspect when compared to the call option.

Lastly, the put option has slightly higher implied
volatility levels given each strike price when compared
to the call option. Indeed, the volatilities for out-
of-the-money puts is far higher than that for in-the-
money calls, and the same can be said when com-
paring in-the-money puts with out-of-the-money calls.
This could be due to the fact that the market is more
scared of downward moves than upward ones, and
hence places a higher volatility on stocks and deriva-
tives when the prices of such financial instruments de-
crease.

9.1.2 April 4th 2016

For this study we will follow an underlying deprecia-
tion of 0.97% occurred on April 4th 2016. For the aver-
age implied volatilities used for the Heston and SABR
model, the implied volatility data has been retrieved
after a stock depreciation of 0.74% occurred on March
14th 2016 and another depreciation of 0.31% occurred
on March 31st 2016.

Tables 78 and 81 show the mean implied volatilities
and SABR calibrated parameters used to find the new
implied volatilities.

110



Table 78: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 43.97 37.32 34.85 35.36
40 33.30 30.87 31.04 32.42
45 27.64 27.28 27.88 29.39
50 26.32 24.88 25.43 27.48
55 31.16 23.61 23.76 25.83

Table 79: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.52 2.12
Sep/16 0.19 0.5 -0.59 1.02
Jan/17 0.19 0.5 -0.62 0.63
Jan/18 0.20 0.5 -0.59 0.52

Figure 269: Citigroup Market Implied
Volatility Surface (%/100) - Call - 04/04/16

Figure 270: Citigroup Heston Implied
Volatility Surface (%/100) - Call - 04/04/16

Figure 271: Citigroup SABR Implied
Volatility Surface (%/100) - Call - 04/04/16

Figure 272: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Call - 04/04/16

It is interesting to point out the fact that, compared
to the implied volatility surfaces of March 20th 2016,
now that we are one week closer to maturity, both the
SABR (Figure 271) and Heston (Figure 270) models
approach better the smile in volatility when the call
option has 1.5 months to maturity. Moreover, both
models underestimate the spike in implied volatility
when the option is very in-the-money with 1.5 months
to maturity.
The Monte Carlo model (Figure 272) once again fails

to portray the smiles and skews for the respective ma-
turities and overestimates implied volatilities when the
option has a few months to maturity.
In terms of the evolution of the market implied

volatility surface form the previous week, we can see
that the shape of the surface is almost unchanged
(please refer to Figure X269XX), except for the fact
that the spike in implied volatility for the call being
in-the-money with May 20th 2016 as maturity is much
more acute, passing the 50% figure (compared to that
of slightly above 40% for a week earlier). For the rest
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of the surface, the implied volatilities have remained
pretty much unchanged compared to a week earlier.

Table 80: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 69.34 58.06 52.10 45.62
25 61.14 50.05 44.77 42.21
30 47.85 40.69 38.64 35.76
35 38.33 34.74 33.81 32.22
40 31.78 30.31 30.11 29.60
45 28.23 26.83 27.03 27.71

Table 81: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.38 1.62
Sep/16 0.18 0.5 -0.36 1.13
Jan/17 0.18 0.5 -0.44 0.80
Jan/18 0.18 0.5 -0.41 0.57

Figure 273: Citigroup Market Implied
Volatility Surface (%/100) - Put - 04/04/16

Figure 274: Citigroup Heston Implied
Volatility Surface (%/100) - Put - 04/04/16

Figure 275: Citigroup SABR Implied
Volatility Surface (%/100) - Put - 04/04/16

Figure 276: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Put - 04/04/16

For the put option as well market implied volatili-
ties (Figure 273) increase slightly compared to a week
earlier. The peak in implied volatility is once again
when the put is far out-of-the-money with 1.5 months
to maturity, reaching over 70% (compared to the pre-
vious week peak of exactly 70%). Moreover, volatil-
ity decreases as time to maturity increases, as seen in
the previous analysis of March 28th 2016. There are
volatility skews present at all maturities.

Hence, the shape of the surface has remained almost
unchanged, with also the SABR (Figure 275) and He-
ston (Figure 274) models doing a discrete job in rep-
resenting the approximations of implied volatility for
all strikes and maturity (with the SABR model being
slightly more accurate in showing the convexity of the
skews for each time to maturity).

The Monte Carlo methodology (Figure 276) does a
poor job in approximating volatility at all strikes and
maturities, overestimating it once again when the put
has a few months to maturity.
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9.1.3 April 11th 2016

Unfortunately, just one set of implied volatilities has
been recorded for Heston and SABR, which comes from
underlying appreciation of 1.72% occurred on April
1st 2016. For the actual market data, the stock price
movement of April 11th 2016 has been of +1.61%.

Tables 82 and 85 show the average implied volatili-
ties and SABR parameters for the calls and puts cor-
responding to this daily underlying movement.

Table 82: Citigroup Mean of Implied
Volatilities - Call(%)

May/16 Sep/16 Jan/17 Jan/18
35 42.87 34.38 34.50 34.58
40 30.57 29.24 29.87 31.18
45 25.68 25.64 26.81 28.26
50 25.20 23.39 24.11 26.33
55 30.47 22.56 22.32 24.61

Table 83: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.18 0.5 -0.57 2.26
Sep/16 0.18 0.5 -0.59 0.91
Jan/17 0.19 0.5 -0.66 0.70
Jan/18 0.20 0.5 -0.60 0.56

Figure 277: Citigroup Market Implied
Volatility Surface (%/100) - Call - 11/04/16

Figure 278: Citigroup Heston Implied
Volatility Surface (%/100) - Call - 11/04/16

Figure 279: Citigroup SABR Implied
Volatility Surface (%/100) - Call - 11/04/16

Figure 280: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Call - 11/04/16

The implied volatility surface of the market (Figure
277) has been almost unchanged compared to that of
the previous week, except for the fact that there is no
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more a skew when the call has two years to maturity.
There is also a decline in volatility when the option is
in-the-money with two years to maturity.

Once again, the best model to represent the mar-
ket implied volatility surface is the SABR one (Figure
279), since it is the only one to portray correctly the
spike in volatility when the call is in-the-money with
five weeks to maturity.

The Heston model (Figure 278) is quite precise as
well. However, it misses the spike in volatility that
occurs when the option is far in-the-money with a bit
more than one month to maturity.

The Monte Carlo (Figure 280), although it still over-
estimates volatility when the call has five weeks to
maturity, manages to show that volatility decreases
as a function of time when the call is in-the-money.
However, this is not true for the call being out-of-the-
money, as the market data shows.

Table 84: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 72.66 57.81 51.76 45.12
25 57.81 50.49 44.19 43.14
30 48.05 39.01 37.70 34.74
35 36.62 32.89 32.64 31.45
40 29.83 28.69 28.98 28.74
45 26.22 25.46 25.97 26.41

Table 85: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.18 0.5 -0.35 1.86
Sep/16 0.17 0.5 -0.32 1.26
Jan/17 0.17 0.5 -0.42 0.86
Jan/18 0.18 0.5 -0.54 0.56

Figure 281: Citigroup Market Implied
Volatility Surface (%/100) - Put - 11/04/16

Figure 282: Citigroup Heston Implied
Volatility Surface (%/100) - Put - 11/04/16

Figure 283: Citigroup SABR Implied
Volatility Surface (%/100) - Put - 11/04/16

Figure 284: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Put - 11/04/16

In terms of the put option (Figures 281 to 284), we
can see that the skew when the option matures on May
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20th 2016 increases slightly when the option is at-the-
money, with however the spike in volatility decreasing
back to 70% when the put is out-of-the-money. Skews
are still present at all maturities, and for the rest of
strikes, the levels of volatility are unchanged compared
to before. Here too, when the put is out-of-the-money,
implied volatility decreases as a function of time to
maturity.

The SABR model and Heston model manage to cap-
ture the spike in volatility when the put is out-of-the-
money with a few weeks to maturity, and approximate
volatility correctly for the rest of strikes and maturi-
ties. The SABR is slightly more precise in portraying
the convexity of the skew when the put has a few weeks
to maturity. Moreover, the levels of volatility are un-
changed for both models compared to themselves one
week earlier.

The Monte Carlo process, instead, arrives to place
almost 100% levels of implied volatility for the put hav-
ing five weeks to maturity, and understates implied
volatility when the option has two years to maturity
and is out-of-the-money. It fails to show the various
skews according to time to maturity.

9.1.4 April 18th 2016

For this specific weekly data, the averages of implied
volatilities are retrieved after stock price appreciations
of 0.53% on March 10th 2016 and 0.38% on March 20th

2016. The actual market data has been gotten on April
18th 2016 after a stock appreciation of 0.42%.

Tables 86 and 89 show the average implied volatili-
ties and SABR calibrated parameters for calls and puts
for this respective daily price movement.

Table 86: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 43.42 37.38 35.67 35.03
40 32.41 31.20 31.50 32.79
45 28.10 27.67 28.55 29.68
50 27.15 25.40 26.11 27.70
55 31.06 24.15 24.29 26.50

Table 87: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.18 0.5 -0.21 2.17
Sep/16 0.18 0.5 -0.44 1.07
Jan/17 0.19 0.5 -0.53 0.69
Jan/18 0.20 0.5 -0.51 0.48

Figure 285: Citigroup Market Implied
Volatility Surface (%/100) - Call - 18/04/16

Figure 286: Citigroup Heston Implied
Volatility Surface (%/100) - Call - 18/04/16

Figure 287: Citigroup SABR Implied
Volatility Surface (%/100) - Call - 18/04/16
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Figure 288: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Call - 18/04/16

While the shape of the market implied volatility
surface (Figure 285) remains unchanged, the spike in
volatility when the option is in-the-money with four
weeks to maturity augments drastically to over 60%.
The same can be said for the call being in-the-money
with a few months to maturity (implied volatility level
increasing from 40% on April 11th 2016 to almost 50%
a week later). The rest of the volatility surface is un-
changed.
The SABR model (Figure 287) not only manages to

catch the spike in volatility when the option is in-the-
money with four weeks to maturity more correctly than
the Heston model (Figure 286), but such spike also
increases compared to a week earlier, while it remains
unchanged in the Heston model. However, although
both models correctly estimate implied volatilities at
all strikes and maturities, they still underestimate the
spike in volatility when the option is in-the-money with
four weeks to maturity.
Now, the Monte Carlo process (Figure 288) under-

estimates implied volatility, and correctly shows that
implied volatility is decreasing as a function of time to
maturity.

Table 88: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 68.26 57.86 52.47 46.06
25 59.97 50.23 45.16 42.32
30 47.95 40.95 39.18 36.94
35 38.44 35.11 34.30 32.80
40 32.04 30.82 30.67 30.15
45 28.44 27.74 27.91 28.60

Table 89: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.19 0.5 -0.12 1.73
Sep/16 0.18 0.5 -0.10 1.22
Jan/17 0.18 0.5 -0.23 0.87
Jan/18 0.18 0.5 -0.32 0.57

Figure 289: Citigroup Market Implied
Volatility Surface (%/100) - Put - 18/04/16

Figure 290: Citigroup Heston Implied
Volatility Surface (%/100) - Put - 18/04/16

Figure 291: Citigroup SABR Implied
Volatility Surface (%/100) - Put - 18/04/16
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Figure 292: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Put - 18/04/16

We can see that, as time passes by, the market
implied volatility surface of the put (Figure 289) in-
creases slightly in implied volatility levels. Moreover,
the skews at each maturity are still present. While the
SABR (Figure 291) and Heston (Figure 290) models
show such skews as well, they fail to show the increase
in implied volatility that occurs when the put is at-the-
money with a few weeks to maturity. However, for the
rest of strikes and maturities, the implied volatilities
are estimated correctly.

The Monte Carlo methodology (Figure 292) is
slightly more precise than in other instances, pricing
in the spike in volatility when the put is out-of-the-
money with a few weeks to maturity. It fails to show
the skews for each time to maturity, but the misestima-
tion in absolute value of implied volatilities are much
smaller than for the previous weeks.

9.1.5 April 25th 2016

For this instance, the average volatilities have been
retrieved from three stock depreciations of 0.74%,
0.31% and 0.97% occurred respectively on March 14th

2016, March 31st 2016 and April 4th 2016. For the
actual market implied volatility data the stock depre-
ciation for closing of business April 25th 2016 has been
of 0.60%.

Tables 90 to 93 show the respective average implied
volatilities and SABR calibrated parameters for the
calls and puts.

Let us now see how the models have evolved through-
out this last week for the call option.

Table 90: Citigroup Mean of Implied
Volatilities (%) - Call

May/16 Sep/16 Jan/17 Jan/18
35 44.80 38.46 35.90 36.05
40 34.16 31.81 31.79 33.07
45 28.27 27.98 28.92 30.72
50 27.01 25.63 26.37 28.33
55 30.28 24.17 24.61 26.61

Table 91: SABR Calibrated parameters - Call

Alpha Beta Rho Nu
May/16 0.18 0.5 -0.13 2.26
Sep/16 0.18 0.5 -0.38 1.16
Jan/17 0.19 0.5 -0.49 0.70
Jan/18 0.21 0.5 -0.65 0.41

Figure 293: Citigroup Market Implied
Volatility Surface (%/100) - Call - 25/04/16

Figure 294: Citigroup Heston Implied
Volatility Surface (%/100) - Call - 25/04/16
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Figure 295: Citigroup SABR Implied
Volatility Surface (%/100) - Call - 25/04/16

Figure 296: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Call - 25/04/16

We can see that in terms of the market implied
volatility (Figure 293), implied volatility stays pretty
much unchanged at all strikes and maturities, with the
only exception being when the option is in-the-money
with one month to maturity: its implied volatility is
almost 80%, vs. the almost 70% recorded a week ear-
lier.
And it is the SABR model (Figure 295) the one that

most closely matches the implied volatilities to those of
the market. Indeed, it reflects the smile that is present
for the call having one month to maturity, and cali-
brates a jump in implied volatility for the call being
far in-the-money with one month to maturity.
However, this model, as well as the Heston (Figure

294) and Monte Carlo (Figure 296) models, while it
manages to see that there is a jump in implied volatil-
ity, it underestimates it greatly (by about 25%).
The Heston model and SABR model manage to price

in the skews for the various maturities, while the Monte
Carlo fails to portray such aspect of the market implied
volatility surface.

Table 92: Citigroup Mean of Implied
Volatilities (%) - Put

May/16 Sep/16 Jan/17 Jan/18
20 68.79 57.82 53.13 46.95
25 61.33 49.91 45.73 42.24
30 50.10 41.49 39.47 36.43
35 39.77 35.52 34.56 32.98
40 32.46 31.03 30.93 30.52
45 28.94 27.62 27.94 27.53

Table 93: SABR Calibrated parameters - Put

Alpha Beta Rho Nu
May/16 0.18 0.5 -0.16 1.70
Sep/16 0.18 0.5 -0.10 1.19
Jan/17 0.18 0.5 -0.16 0.92
Jan/18 0.18 0.5 -0.36 0.60

Figure 297: Citigroup Market Implied
Volatility Surface (%/100) - Put - 25/04/16

Figure 298: Citigroup Heston Implied
Volatility Surface (%/100) - Put - 25/04/16
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Figure 299: Citigroup SABR Implied
Volatility Surface (%/100) - Put - 25/04/16

Figure 300: Citigroup Monte Carlo Implied
Volatility Surface (%/100) - Put - 25/04/16

In terms of the put, it can be underlined that form
observing Figure 297, market implied volatility has
slightly increased for the put having one month to
maturity and being out-of-the-money. Indeed, peak
of volatilities arrive at 80% vs. the previous peak of
75%. The rest of the surface shows the typical skews
for all maturities, with implied volatilities remaining
unchanged in levels.
A surprising point is that this time it is the Heston

model (Figure 298) the best one to estimate the jump
in volatility for the put being far out-of-the-money with
one month to maturity.
However, for strikes close to that specific strike for

the same maturity, the SABR model (Figure 299) is
the better model to calibrate implied volatilities.
Both models correctly show skews at all maturities.
The Monte Carlo process (Figure 300) fails to show

the skews for the various maturities and, although it
managed to price in a spike in implied volatility for
the put being far out-of-the-money with one month to
maturity, it underestimates such spike.

Therefore, it can be stated that the Heston model
and the SABR model perform equally well in this in-
stance.
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10 Conclusions and further ap-
plications

After all of the previous empirical evidence, conclu-
sions can now be drawn for both empirical studies.

10.1 Conclusions of the first empirical
study

Tables 94 to 96 summarise the performances of the
three models under the various circumstances that
have been explored in the previous sections of this re-
search paper.
These three Tables should be read in the following

way:
- Yellow cell: the Heston model is the one that most

closely captures implied volatility or that matches most
closely the price to the market data
- Orange cell: the Heston model and the SABR

model are the ones that most closely capture implied
volatility or that match most closely the price to the
market data
- Pink cell: the SABR model is the one that most

closely captures implied volatility or that matches most
closely the price to the market data
- Purple cell: the SABR model and the Monte Carlo

model are the ones that most closely capture implied
volatility or that match most closely the price to the
market data
- Blue cell: the Monte Carlo model is the one that

most closely captures implied volatility or that matches
most closely the price to the market data
- Grey cell: the Heston model and the Monte Carlo

model are the ones that most closely capture implied
volatility or that match most closely the price to the
market data
- Blue cell: all three models are accurate in captur-

ing implied volatility or at matching the price to the
market data
- White cell: insu�cient data has been recovered in

order to draw a conclusion.
Moreover, please refer to the respective Figures seen

previously for an accurate reference to the conclusions
that follow.

Table 94: Implied volatility capture -
Empirical Study 1

C GS ZION GOOG XOM
-5% to -1% Call
-5% to -1% Put
-1% to 0% Call
-1% to 0% Put
0% to 1% Call
0% to 1% Put
1% to 5% Call
1% to 5% Put

Table 95: Prices di↵erentials summary -
Empirical Study 1

C GS ZION GOOG XOM
-5% to -1% Call
-5% to -1% Put
-1% to 0% Call
-1% to 0% Put
0% to 1% Call
0% to 1% Put
1% to 5% Call
1% to 5% Put

Table 96: Implied volatility surface evolution
and capture - Empirical Study 2

C
28/03/16 Call
28/03/16 Put
04/04/16 Call
04/04/16 Put
11/04/16 Call
11/04/16 Put
18/04/16 Call
18/04/16 Put
25/04/16 Call
25/04/16 Put

10.1.1 The implied volatility surface capture

Please refer to Table 94 and to the corresponding
Figures for the conclusions that follow this section of
the conclusion for the first empirical study.
The first conclusion that can be drawn is that the

SABR model is the most reliable model to use to
construct implied volatility surfaces that most closely
match those of Yahoo! Finance. Indeed, Table 94
shows that the majority of cells are coloured in pink,
which underlines the dominance of the SABRmodel for
most instances. The Monte Carlo model, on the other
hand, is never optimal to use when estimating implied
volatility surfaces. It always either underestimates or
overestimates volatility for all strikes and maturities,
and does not portray neither smiles nor skews where
appropriate. Hence, it will not be analysed further in
this section of the conclusions.
However, the Heston model is a valid candidate to

use depending on the situation, the company profile
and the underlying movement predicted by the analyst.
This is confirmed by the fact that Table 94 shows a lot
of orange cells, underlining that both the Heston and
SABR models show reliability in calculating implied
volatility surfaces.
It is also interesting to see that the Heston model

works as well as the SABR model with put options
when estimating implied volatility. Indeed, most of
the orange cells of Table 94 include situations in which
the specific puts are analysed.
The Heston model, additionally, does not manage to

show implied volatility with jumps when the option is
in-the-money. It shows continuous values for volatility
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and fails to show big discrepancies for volatilities that
are seen in the market data for calls or puts with the
same time to maturity but with di↵erent strikes. The
SABR model on the other hand, manages to portray
such spikes in volatility when the option is both in-
the-money and out-of-the-money. The Heston model
manages to show such jumps in volatility when the
option is out-of-the-money.

Moreover, jumps and/or series of bumps in implied
volatility are present almost exclusively for very short-
dated options. For longer-dated options, the estima-
tions of volatilities are more precise for both the Heston
and the SABR model.

Both the Heston and SABR model fail to show
bumps for implied volatility for the same time to ma-
turity when it is present in market data, and show
instead more linearly convex curves. Such bumps in
volatility for a given time to maturity are very rare,
however, as the data has shown.

The Heston and SABR models correctly calibrate
the convexity of skews and smiles for any give time
to maturity, independently of the company or of the
option being analysed.

For short-dated options, it is almost always opti-
mal to use the SABR model for put options, while for
calls 20% of the times just the SABR is the preferred
method, while for the rest of the 80% of the times the
Heston model is. For long-dated options, it is always
the case where both the Heston model and the SABR
model perform equally well.

For small changes in the underlying (for changes be-
tween -1% and +1%), it is highly recommended to
adopt the SABR model to match implied volatility to
that of the market. Table 94 indeed shows that 10 out
of 16 cells are filled in pink and 15 out of 16 are filled
in pink or orange.

For large changes in the underlying price (with an
absolute value between 1% and 5%) if only one model
can be used, then the SABR model is the one to adopt.
However, the Heston model can be reliable too, since
out of 16 cells in Table 94, 9 are orange (4 for calls
and 5 for puts). The Heston model is as precise as
the SABR one when analysing investment banks (such
as Goldman Sachs) that have big underlying price de-
preciations and when analysing commercial or global
banks (such as respectively Zions Bancorporation and
Citigroup) with big appreciations in the underlying.

For non-bank companies it is optimal to use the
SABR model to estimate implied volatility, as seen in
Table 94: for Google it is almost always optimal to
make reference to the SABR model (5 cells out of 6
being are pink coloured), whereas for Exxon Mobil it
is a “dominant” model to use 67% of the times.

With regards to banks, if the bank has commercial
banking activities in its portfolio and the underlying
appreciation is above +1%, then the analyst should be

indi↵erent between using the Heston model and the
SABR model. This is according to the results for Citi-
group and Zions Bancorporation shown in Table 94. If
the bank has exclusively investment banking activities,
then for underlying movements above the -1% figure it
is better to use exclusively the SABR model to cal-
ibrate implied volatility surfaces. This is the result
of the analysis of the option implied volatility surface
behaviours of Goldman Sachs. Overall, however, the
analyst should prefer the SABR model to the Heston
one.
For very large market capitalisation ($500 billion or

over) and/or Information Technology companies the
SABR model is the optimal one to use in terms of esti-
mating implied volatility. This comes form the results
shown by Google.
For middle cap companies (such as Zions Bancorpo-

ration) the SABR model is still the optimal model to
use to estimate implied volatility, although for large
movements in the underlying price the Heston model
does a discrete job as well. For positive movements in
the underlying, the Heston model is preferred to the
SABR model (please refer to the group of one yellow
cell and three orange cells in Table 94).
For Oil & Gas firms, the SABR model is the pre-

ferred methodology to adopt. For calls, however, the
Heston model can be of equal accuracy too.
With regards to the models themselves, the Heston

model performs better for out-of-the-money options for
commercial banks and instead for in-the-money op-
tions for investment banks. For companies belonging
in other sectors, the Heston model can work well with
either out-of-the-money options, in-the-money ones or
both. SABR model-wise, for non-banks it works well
for both in-the-money and out-of-the-money options,
while for mid-caps it is best used for out-of-the-money
options. For large banks, it is optimal to use it for
both in-the-money and out-of-the-money options.
It is interesting to also analyse the performance of

the models after specific catalysts concerning the com-
panies are released and see if there is any specific pat-
tern between the two.
For Citigroup, on April 7th the bank “revises ex-

ecutive pay plans, wth proxy advisors unsatisfied”228.
This might have led partially to the stock depreciation
of 3.80% recorded in that day, and to the slight domi-
nance as a result of the SABR model compared to the
other two (one pink cell in Table 94 and one orange
cell for movements in underlying between -5% and -
1%). On April 14th 2016, one day before the Earnings
report of the bank, a comparable company to itself,
Bank of America, reported an 18% drop in profits be-
cause of its trading division229. This might have led

228http://finance.yahoo.com/news/citi-revises-executive-pay-
plan-205808263.html

229http://finance.yahoo.com/news/bank-america-profit-drops-
18-112937514.html
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investors to shift their money to other stronger banks
such as Citigroup might have been, which has led to
a stock appreciation for that day of 1.65%. However,
even with this catalyst, the Heston and SABR model
have performed equally to each other.

For Goldman Sachs, on April 7th 2016 the stock de-
preciation of 3.08%, with consequent equal dominance
of the Heston and SABR model might have been deter-
mined by the fact that stock have been decreasing in
value because of both Oil and the Dollar depreciating
in value230. On April 8th 2016 it is found that “Gold-
man cut pay for executives in 2015”231, and the SBAR
model has beat the Heston and Monte Carlo model in
terms of estimating implied volatility. On April 14th

2016 Goldman Sachs declares that it will move for-
ward with cost cuts232 and the poor performance of
the Bank of America Earnings is released, as previ-
ously stated, which might have conditioned the fact
that the SABR model has been the best performing
one with respect to the Heston and Monte Carlo ones.
On April 19th 2016, the investment bank posts poor
revenue results233 and consequently the SABR model
performs well compared to the other two construction
methodologies.

With respect to Zions Bancorporation, as stated pre-
viously, the poor performance of Bank of America in
its Earnings report might have a↵ected the small com-
mercial bank, since its stock appreciated by 0.99%.
Moreover, in this specific instance the Heston model
has performed better than the SABR one for the call
and equally for the put option.

Google-wise, on April 1st 2016 two major catalysts
might have conditioned the performance of the mod-
els: the fact that Citi cut Google price targets234 and
the suspension of NYSE trading of the stock235. This
might have caused the fact that the SABR model beat
the other two models in terms of estimating the im-
plied volatilities of calls and puts. On April 4th 2016,
Google wins a specific court ruling over push notifica-
tions, saving itself an almost sure fine of $85 million236.
This might have conditioned the models, making the
SABR one the dominant one. On April 26th, there has

230http://finance.yahoo.com/news/stocks-retreat-as-oil–
dollar-push-lowe-191735867.html

231http://www.marketwatch.com/story/goldman-cut-pay-for-
executives-in-2015-2016-04-08?siteid=yhoof2

232http://www.bloomberg.com/news/videos/2016-04-
15/goldman-said-to-seek-deep-cost-
cuts?cmpid=yhoo.headline

233http://finance.yahoo.com/news/goldman-sachs-profit-
slumps-fourth-114645384.html

234http://www.investors.com/news/technology/citi-
lowers-amazon-nflx-google-price-targets-on-stock-
compensation/?ven=YahooCP&src=AURLLED&ven=yahoo

235http://www.marketwatch.com/story/nyse-suspends-
trading-of-amazon-alphabet-6-other-securities-2016-04-
01?siteid=yhoof2

236http://www.siliconbeat.com/2016/04/04/google-beats-
back-patent-troll-saves-85-million/

been news of an examination by the FTC over Google’s
possible Android dominance abuse237, which has led to
a stock depreciation of 2.08% and to the Heston model
performing slightly better than in other instances.
For Exxon Mobil, on April 1st 2016 the big cata-

lyst consists of Oil prices declining sharply, and this
might have a↵ected the fact that the the SABR model
is the one that performs the best for estimating im-
plied volatilities of put options. On April 7th, there
are again very weak Oil prices, and this however has
led to the fact that the SABR model has once again
dominated in estimating implied volatilities for puts.
Passing on to a closer analysis of the various Figures

shown before in this research paper, we can see that
in terms of implied volatility calibration for out-of-the-
money options, the SABR model is almost always the
best model to use for calibrating puts. For half of the
instances for calls, both the Heston and SABR models
are optimal, while for the other half of instances the
SABR model is the best one to use. With regards to in-
the-money options, the SABR model is almost always
the preferred model to adopt for calls, 70% of the times
it is also optimal for put implied volatility calibrations
(the other 30% being both Heston and SABR).

10.1.2 The pricing di↵erentials

For the analysis for the second and last section of the
first empirical study, please refer to the specific Figures
showing the various price di↵erentials and to Table 95.
The first thing that comes to the eye is that there is

a prevalence of pink cells in Table 95. Hence, we can
state that as a general model to use to estimate option
prices, the SABR model is the most accurate one.
However, we can spot a lot of yellow cells, especially

for the column of Zions Bancorporation: this means
that the Heston model is also an optimal model to use,
depending on the situation, the company profile and
sector it is involved in, and the underlying movement
predicted by the analyst. Moreover, it seems that the
Heston model is the most precise methodology to use
for put options of banks when the underlying move-
ment for the trading day is between -1% and 0%.
When analysing jumps in implied volatility, al-

though they are not many and are not present of-
ten for one given implied volatility surface, there is
a slight dominance of the SABR model with respect to
pricing calls and puts, although for specific instances
it happens that either the Heston, Monte Carlo or
all three models are the respectively the most precise
and equally precise. With respect to bumps in im-
plied volatility for a given maturity, which are even
rarer than jumps, there is also here a slight domi-
nance for the SABR model, although the Heston and

237http://blogs.barrons.com/techtraderdaily/2016/04/26/google-
slips-ftc-probe-possible-android-dominance-abuse-says-
wsj/?mod=yahoobarrons&ru=yahoo
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Monte Carlo model calibrate better prices for specific
instances too.

With regards to short-dated options, the the Heston
model does a better job at estimating option prices,
and the SABR model and Monte Carlo one dominate
the comparison rarely. For long-dated options, the best
model to calibrate prices is the SABR model, although
the Monte Carlo methodology can be quite accurate
too.

Regarding out-of-the-money options, the SABR
model is the most precise price calibrator, although
in certain circumstances the Heston model is equally
precise. For in-the-money options, the SABR model is
once again the best model to use, even if the Heston
and Monte Carlo models are sometimes more accurate.

By looking at Table 95, we can also see that for
small changes in the underlying movement (movements
within the absolute value of 1%) the SABR model is
still the dominant one (13 cells pink out of 20). When
analysing bigger changes in the underlying (specifically
with an absolute value between 1% and 5%) there are
only 8 cells pink out of 16. However, there are also
an orange and a purple cell, which respectively lets us
state that the SABR model is optimal for both cells.
So, in this instance the SABR model is the optimal
model to use 63% of the times. The Monte Carlo pro-
cess is actually optimal a couple of times, and the Hes-
ton model beat the other two models 19% of the times.
So, all in all the SABR model is still the recommended
model to use.

With respect to the models themselves, the Heston
model is more precise for in-the-money calls and out-
of-the-money puts, while the SABR and Monte Carlo
methodologies are better at estimating prices exclu-
sively for out-of-the-money options.

For non-bank companies, evidence is that the SABR
model should be used. Indeed, for only two cells out of
12 is the SABR model not optimal to use. It is espe-
cially advised to adopt when the underlying movement
is less than 1% in absolute value. When analysing
banks, there is more of a mix in the optimal models
to use, with the Heston methodology being optimal in
various instances. Overall, however, the SABR model
is still the one that constitutes the best one in pricing
options, with 12 cells out of 24 being pink and one cell
being orange.

Regarding investment banks, such as Goldman
Sachs, the SABR model is the optimal model to use
when the underlying price movement is positive. How-
ever, when such movement is negative in percent-
age, both the SABR and Monte Carlo models are the
best models to use. The final answer will depend on
whether the underlying movement is above or below -
1% and whether the analyst wants to predict the prices
of calls or puts. Commercial banks-wise, the SABR
model is especially great to use for positive changes in

the underlying price, while for negative changes in the
stock price the Heston model is the most accurate.

With regards to Information technology companies,
such as Google, the SABR model is the most accurate
model to use when pricing options, except when pricing
calls with underlying movements of less than -1%. For
Oil & Gas firms, the SABR model is the most precise
one to use, as evidence from the Exxon Mobil analysis
shows.

For large cap companies, the SABR model is the
one that most closely matches option prices to those
of the market. However, for mid-cap firms, such as
Zions Bancorporation, Table 95 shows that the Heston
model is the most appropriate one to adopt, especially
when the movement in the underlying price is negative.

Let us now explore whether there is a pattern be-
tween specific catalysts and performances of the mod-
els. Let us retake the same catalysts that have been
listed in the previous section of this conclusion part.

On April 7th Citigroup does not satisfy proxy ad-
visors for the revision of executive pay plans, and the
result is that the SABR model is the optimal one to use
for calls, while there is indi↵erence between the Hes-
ton model and the SABR one for pricing puts. For the
April 14th catalyst, which consists in Bank of Amer-
ica’s poor Earnings report, the SABR model is the one
that most accurately prices both calls and puts.

For Goldman Sachs, the April 7th 2016 catalysts in-
clude drops in the values of both the Dollar and Oil,
which has led to the SABR model dominate for pricing
calls and the Monte Carlo one for puts. On April 8th

2016, the cut of pay for executives might have led to
the Heston model being the best model to use overall,
even though for calls, the three models analysed in this
research paper have been equally accurate. On April
14th 2016, after the Bank of America Earnings report
has been released, the SABR model has performed far
better than the other two. Lastly, on April 19th, after
disappointing revenue results from the American in-
vestment bank, once again we are in a situation where
the SABR and Monte Carlo models price most accu-
rately respectively puts and calls.

Regarding Zions Bancorporation, the Bank of Amer-
ica Earnings report might have led to the fact that
the SABR model has performed best for puts and the
Monte Carlo model for calls.

With respect to Google, the two major catalysts of
April 1st 2016 (the Citi rating cut and the NYSE trad-
ing suspension) might have led to the fact that the
SABR model has dominated the pricing of both calls
and puts. On April 4th 2016, the court ruling winning
of Google might have influenced the SABR model to
be the best one to adopt to price options. Lastly, on
April 26th 2016, the FTC examination over Google’s
possible Android dominance abuse might be the cause
for the Monte Carlo being the most appropriate model
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to use to price calls and the best one, along wit the
SABR model, to price puts.

Lastly, for Exxon Mobil, the April 1st 2016 drop in
Oil prices might be the reason why the SABR model
performed better than the other two in pricing calls
and puts. The other big Oil prices drop on April 7th

2016 might also explain why the SABR model is once
again the best pricer among the three models analysed
in this research paper for calls and puts.

Additionally, the three implied volatility construc-
tion methodologies are better used with short-dated
options in general when calibrating option prices.

Also, there are three important aspects to consider
when using these models as option pricers: bid-ask
(and hence arbitrage opportunities) prices, transaction
costs and liquidity that the specific model would bring
to the market. The way the conclusions are inferred
from these specific analyses are in the following for-
mat: form the point of view of a price taker, the most
appropriate model for pricing bid prices is that which
shows the highest price di↵erential, and vice-versa for
the ask prices estimation. The opposite is true for
market makers. Indeed, the idea behind the follow-
ing conclusions is that if the specific investor is a price
taker, then he/she buys at the ask and sells at the bid.
Therefore, the investor wants a model that shows a
0-to-positive price di↵erential for bids (meaning that
he/she estimates that sell prices could be higher than
what is shown in the market) and that he/she wants
a model showing a 0-to-negative price di↵erential for
asks (because he/she is estimating the prices at which
the options would be bought, and negative di↵erentials
mean that the investor wants to pay less than what
is shown by the market). While this is not the best
approach to promote market liquidity (since bid-ask
spreads would skyrocket), it would help the investor
avoid being exploited through arbitrage opportunities.
Instead, if the analyst is examining the model which
would promote market liquidity and transactions the
most, then he/she should chose the model which has
the lowest price di↵erentials with those shown by the
market.

Having stated these specific methodologies used to
evaluate the various models, we can now state that for
bids form the point of view of the client (asks from
the market maker’s perspective) the SABR model is
the most appropriate model to use to estimate prices,
while for ask prices from the point of view of the client
(bid prices form the market maker’s perspective) the
winner prize goes equally to the Heston and Monte
Carlo model. Instead, the most precise model, which
would hence promote liquidity in the market, is the
SABR model.

As it could have been expected by the reader, the
results of this second empirical study are absolutely
dependent on the following factors: the type of com-

pany, the sector it is involved in, the option being anal-
ysed, whether the option is in-the-money or out-of-the-
money, the time to maturity of the option, the stock
price change in value and also potential firm catalysts.
Lastly, one of the most important conclusions that

can be drawn by Tables 94 and 95 is that a cell with
strike X, time to maturity Y and colour Z in Table 94
does not necessarily match in colour with the respec-
tive cell with strike X and time to maturity Y of Table
95. This happens only for 44% of the times. This
means that only 44% of the times the model that most
correctly estimates the implied volatility surface also
manages to be the most accurate option pricer.

10.2 Conclusions of the second empiri-
cal study

Please refer to the Figures of section 10 of this re-
search paper to appreciate the conclusions that follow
in this specific Section.
The first conclusion we can draw from looking at

Table 96 is that the most accurate model to capture
the implied volatility surface of the market throughout
the evolution of time is the SABR model. Indeed, eight
cells out of ten are pink and two out of ten orange. So,
it is always convenient to use the SABR model.
However, we can see that as time evolves eventu-

ally also the Heston model becomes a great model to
use when estimating the implied volatility surface of
put options, as the two orange cells of Table 96 show.
Hence, we can state that as the market implied volatil-
ity surface evolves, the Heston model approaches the
SABR model in terms of precision of capturing such
surface.
Before noting other conclusions, let us state that it

is never optimal to use the Monte Carlo method, as the
respective Figures show. From this moment onwards,
the conclusions will put at comparison only the Heston
and SABR model.
Bumps-wise, they are only present for Figure 277

for long-dated calls, and both models perform equally
in terms of portraying those volatilities. They indeed
both miss out in capturing those bumps.
For short-dated options, it is always more appropri-

ate to use the SABR model. However, for long-dated
ones both models perform equally in terms of captur-
ing the volatility surface.
Moreover, both models are more precise to use when

calibrating long-dated option volatility surfaces.
The Heston model is more accurate for out-of-the-

money options. In the first weeks of this study
the SABR model was precise for both in-the-money
and out-of-the-money options, while as the volatil-
ity surface has evolved throughout time the construc-
tion methodology became more precise for out-of-the-
money options.
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For small changes in the underlying (with absolute
value of less than 1%) that occur far from the maturity
of the options, the SABR model is the most precise
model to use. As we approach the maturity of the
options, however, the Heston model becomes as precise
as the SABR model. On the other hand, for bigger
changes in the underlying price (changes in absolute
value between 1% and 5%) it is only the SABR model
to appropriately calibrate the implied volatility surface
of the market.

With respect to smiles sand skews, the SABR model
is the one that correctly calibrates them. Indeed, for
calls there is a smile for short-dated options and a skew
for longer-dated options that are correctly captured
by the model. The skews part of the implied volatility
surface is also well approximated by the Heston model.
With regards to puts, instead, there are only skews
for each respective maturity, and both the Heston and
SABR model correctly estimate that there are skews
for each given maturity.

With respect to which model is the best one to
approach implied volatilities for out-of-the-money op-
tions, we can spot that for calls it is the SABR model,
while for puts the two models perform equally. There
is indeed a jump for out-of-the-money puts, which is
properly calibrated in both models. Instead, for in-
the-money options it is exclusively the SABR model to
approach properly the implied volatility surface shown
by the market. Indeed, for in-the-money calls there is
a jump in volatility as the call is very in-the-money,
and such jump is captured only by the SABR model.

Additionally, since the analysis has been carried out
to the Citigroup options, we can state that the SABR
model is the recommended model to use if the stock
that of a global bank or that of a large-cap firm. How-
ever, as we approach the maturity of the short-dated
options, the Heston model becomes optimal too.

In terms of the evolution of the implied volatility sur-
faces, we can spot that for calls the volatility surface
remains unchanged except for the vary in-the-money
calls with one month to maturity, where the implied
volatility levels constantly increases from 40% to al-
most 80%. Instead, for the Heston and SABR models
the implied volatility surface does not change with time
passing by, making them both miss out on the spike in
volatility that occurs for the calls being in-the-money
with one month to maturity. With respect to puts, the
market implied volatility surface remains unchanged
for all strikes and maturities, except for out-of-the-
money and at-the-money puts, where implied volatility
levels evolve respectively from 70% to 85% and from
40% to 70%. The Heston model also has an unchanged
implied volatility surface for puts, with the exception
of out-of-the-money ones where it correctly estimates
an increase of implied volatility throughout time from
70% to 80%. The SABR model also has an unvaried

implied volatility surface for all strikes and maturities
throughout time, except the spike in volatility for out-
of-the-money puts which increases in value from 40%
to 70%. Hence, it is interesting to point out that for
puts the Heston model is the most precise in captur-
ing spikes in volatility. Furthermore, it can be added
that both models are more precise when the options
are far from maturity than otherwise. Indeed, they do
not capture the increase in volatility for in-the-money
calls with one month to maturity and slightly underes-
timate implied volatility for out-of-the-money puts as
weeks pass by.
Let us now analyse how potential catalysts might

have conditioned the performance of the Heston and
SABR models in estimating implied volatility surfaces.
On March 28th 2016, the major headline was that

“Stocks are on edge as Fed commentary, job report
looms”238. This might have caused the SABR model
to be more precise with respect to the Heston model.
On Monday April 18th 2016 there is a downgrade to
Citigroup stock239, which might have led to the SABR
model being the best model to use for implied volatility
surface estimation.
Lastly, it can be stated that results do vary depend-

ing on whether the option being analysed is a call or a
put, as this Section has shown just now.

10.3 Advantages and limitations/zones
of improvement for this study

10.3.1 Advantages of the study

There are various advantages, limitations and zones
for improvement for the research that has been carried
out in the empirical section of this paper.
Let us start by stating the advantages of such

methodology:
1 - There is the relaxation of many assumptions

of the Black-Scholes model, such as constant implied
volatilities and constant rates.
2 - The models are based on reasonable inputs, such

as rates of 0.25% and dividend rates according to the
specific companies dividend policies. Moreover, the ini-
tial implied volatility input is taken from the average of
previously observed implied volatilities, which means
that actual, reasonable data is used to estimate implied
volatility surfaces and option prices.
3 - Moreover, with regards to the Heston model, it

allows for a “closed form solution for the European op-
tions”240, for “non log-normal probability distributions
and it fits the implied volatility surface of the options

238http://finance.yahoo.com/news/stocks-on-edge-as-fed-
commentary–jobs-report-looms-191358208.html

239http://www.marketwatch.com/story/citigroups-stock-
drops-after-analyst-downgrade-2016-04-18?siteid=yhoof2

240http://pure.au.dk/portal-asb-
student/files/8505/222384.pdf
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prices in the market”241. Additionally, the volatility
of the model experiences mean reversion and “permits
the correlation between the asset and the volatility to
be changed”242.
4 - The models can produce “realistic dynamics, such

as forward volatility”243.
5 - The models are relatively quick in measuring im-

plied volatility through the MATLAB 2016 code.
6 - Moreover, for very short-dated options the mod-

els give relatively precise prices. Hence, precision for
specific options and specific situations is another ad-
vantage of the three models used in this study. The
Heston and SABR models are also relatively precise
for calibration of implied volatility surfaces.
7 - This methodology allows to see right away which

method is the best one under which circumstance
through the development of the 3D figures.
8 - The study also allows the analyst to understand

where each model can be improved or used. For ex-
ample, the Monte Carlo method is never optimal to
calibrate implied volatility surfaces, so it should not
be used further in future studies.
9 - Such MATLAB 2016 and Excel codes provide

the basis for further, more sophisticated studies. For
example, we could use a combination of the SABR
and Heston model with the addition of jumps in stock
price and volatility would allow the analyst to develop
a SVJJ model.
10 - The study can be further applied to options of

any asset class as long as the underlying has a su�cient
amount of implied volatility points for a given surface.
11 - The models can be used for exotic options.

With regards to American options, only the Heston
and SABR models can be used.

10.3.2 Limitations of the study and zones for
improvement

Let us now see the limitations and zones for improve-
ment for the study that has been carried out in the
empirical section of this research paper:
1 - The most important limitation of this study is

that past results might not necessarily represent what
will happen in the future for specific stocks and under-
lying movement percentages.
2 - Correct implied volatility surface estimation does

not necessarily lead to precise option pricing, and vice-
versa. Therefore, discrepancies between the models
prices and the actual market data might be due to
factors other than implied volatility, such as interest
rates, dividends, frictions, etc.

241Ibidem
242Ibidem
243http://quant.stackexchange.com/questions/5981/what-are-

the-advantages-disadvantages-of-these-approaches-to-deal-
with-volatilit

3 - Even if a model is more precise than the others
for option pricing, for instance, it does not mean that
the model is necessarily precise itself.
4 - The implied volatilities and prices of options from

these models are extremely sensitive to the parameters
decided beforehand by the analyst.
5 - Some of the Heston and SABR parameters have

been chosen before hand and it has been chosen to
keep them fixed. An example is the SABR model’s
Beta which has been set to equal 0.5. However, was
this the best choice? Is it correct to have a fixed Beta
in the SABR model or fixed interest rates in the Hes-
ton model? Improvements would include models that
account for parameters that are exclusively stochastic.
6 - The codes can be improved for each model, rang-

ing from making them more “automatic” (with hence
less data to copy out manually from the Yahoo! Fi-
nance website, An example could be to create an Excel
macro to extract data directly from Yahoo! Finance)
to more sophisticated.
7 - What is the definition of “jump”? Does it consist

in an underlying price movement of 5% move in maxi-
mum ten seconds? Or a move of 10% in maximum one
minute? The definition of “jump”, therefore, depends
on the model that the analyst is using and a great deal
of bias can result from the ambiguity of such definition.
8 - All these conclusions are based on the fact

that both the Heston and SABR model initial volatil-
ities are simply averages of previously recorded im-
plied volatilities. In fact, “volatility is unobservable,
and the parameter values are therefore not easily esti-
mated”244. An improvement to this study could have
been if GARCH model were used instead of simple
arithmetic average of implied volatilities.
9 - The recordings in the underlying price movement

used to find the average implied volatilities do not nec-
essarily match the underlying price movement recorded
when the actual market data is retrieved. For exam-
ple, for Citigroup the average implied volatilities for
a stock depreciation between 1% and 5% come from
stock depreciations of 2.33% and 1.31%. However, the
actual market data against which the Heston, SABR
and Monte Carlo implied volatilities have been com-
pared to has been retrieved after a drop in price of
3.80%.
10 - There is the assumption under this study that

the prices estimated should represent the average of
the bid-asks. However, is this the correct way of com-
paring them to the market data? For example, the
SABR model often overestimates prices while the He-
ston and Monte Carlo models do the opposite. Would
it then have been more appropriate, assuming the ana-
lyst is a price taker to use the SABR model just for bid
estimations (ask calibrations if the analyst is a market
maker) and the Heston and Monte Carlo models just

244Ibidem
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for ask calibrations (bid estimations if the analyst is a
market maker)?
11 - For small cap stocks there is insu�cient op-

tions data to develop proper implied volatility surfaces,
which means that the Heston and SABR can simply
not be applied in this case to make a reasonable com-
parison. The Monte Carlo model however, can be used
to estimate the single options prices.
12 - The Monte Carlo methodology cannot be used

for American options.

10.4 Further applications of this study
and general conclusions

What is also important for this study is how it can
be used further for other applications. For example,
we can state that by looking at Table 94, if the un-
derlying has a movement in absolute value bigger than
5%, then the SABR model is the one to use for implied
volatility surface and option prices calibrations if the
company is a large-cap one. If instead the analyst is
carrying out a study for mid-caps, the Heston model
might be optimal for price estimations when the stock
depreciates by more than 5%.
If we are analysing jumps in implied volatility for

stocks other than those of this study, then the SABR
model is the one that best captures such jumps for
calls, while for puts it might be the case that both the
Heston and the SABR models work pretty well.
If we are estimating volatilities of short-dated op-

tions, it would be more appropriate to adopt the SABR
model. For long-dated options, both the Heston and
the SABR model work equally well. On the other
hand, for prices estimations, for short-dated options
the Monte Carlo model can be quite precise too. For
long-dated options, most of the times it would be best
to use the SABR model.
For out-of-the-money options it is advised to use ei-

ther the Heston or the SABR model whether the ana-
lyst is trying to estimate implied volatilities or option
prices. For in-the-money options, instead, it is only
optimal to use the SABR model.
The study could be further applied to estimate the

implied volatility surfaces and prices of large Informa-
tion Technology companies, such as Apple, and other
big Oil & Gas firms, such as British Petroleum. There
is strong evidence in this study from Financial Ser-
vices stocks, which means that the study could be fur-
ther applied to other banks such as Bank of America
and J.P. Morgan. In this case it would be optimal to
use the SABR model for both implied volatilities and
prices estimations. For mid-cap banks, Zions Bancor-
poration’s results make the analyst shift towards using
the Heston model for option prices calibration.
With respect to news and headlines, we have seen

that catalysts for comparable banks might have a ma-

jor impact in the change in levels of the implied volatil-
ity surface and in the changes in prices of both calls
and puts. This can be further extended to other bank
stocks, whether large-cap, mid-cap or small-cap and
whether global, commercial or investment banks.

However, it must be noted that with respect to op-
tion price calibrations, all of the three models seem to
be more precise for banks than for Information Tech-
nology or Oil & Gas. Indeed, it su�ces to see the
price di↵erentials to see that the absolute value of
such di↵erentials is much smaller for options of banks
than otherwise. It must also be underlined that this
is mainly true because the underlying sock prices are
much smaller for bank stocks than for Google and
Exxon. If the analyst wants to invest $X in a company
options, then he could also look at the percentage pro-
portional discrepancy between option prices given by
the market and by the models.

So, we can also conclude and keep in mind that the
SABR model is equally precise independently of the
stock sector for implied volatilities and equally pre-
cise independently of the stock sector for option price
estimations as long as the stock belongs to a large-
cap company. Furthermore is is more precise to use
for large-cap bank companies rather the mid-cap ones.
For the Heston model, more appropriate results can
be used when analysing banks, and not when carry-
ing out studies on Information Technology or Oil &
Gas firms. The Heston model is more appropriate for
mid-cap banks, such as Zions Bancorporation, for both
implied volatility surface estimations and option price
calibrations. Lastly, the Monte Carlo model should be
used exclusively for option pricing and it can be pre-
cise for both large-cap and mid-cap companies. Such
model is also more precise with respect to banks when
the bank has only one specific specialisation, such as
Goldman Sachs in Investment Banking or Zions Ban-
corporation in Commercial Banking.

Therefore, the sector choice does change the perfor-
mance of the specific model and the “best” model does
change based on the sector, on the market capitalisa-
tion and on the specialty the firm is involved in.

With respect to other asset classes, it is more tricky
to apply the results of this study to them since, as we
have seen in the Theoretical Section of this research
paper, Equity options present mainly skews and FX
ones are characterised by smiles. Commodities could
have either. A reasonable approach could be to use the
results of the Financial Services sector to estimate FX
option prices, as banks’s trading desks also work with
FX instruments and currencies. The same can be said
for Fixed-Income options. For commodities, or at least
for Oil, Exxon Mobil’s results of this study could be
used as plausible ones to estimate Oil option implied
volatilities and prices.

Other aspects of this study that could further anal-
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ysed are that Oil & Gas companies are a lot depen-
dent on Oil prices, as well as banks’ financial perfor-
mances are tied to regulation and Information Tech-
nology firms are dependent on the number of users per
application. We could therefore carry out regression
analyses on whether such aspects of the various indus-
tries have an e↵ect on which model is the best one to
use for calibrations of implied volatility surfaces and of
option prices.
So as we have seen in this section of the research pa-

per, it does matter whether the company is a mid-cap,
large-cap or very large-cap, whether the stock price ap-
preciates or depreciates by X%, whether the company
is in the Financial Services industry or not, whether
there are catalysts coming on for the specific trading
day, and whether we are analysing a call or put option.
Lastly, the Conclusions Section of this paper has

been trying to explain why this study has had the re-
sults that it has had. Reasons vary from what stated in
the previous paragraph to other factors, such as pos-
sible changes in interest rates, dividends, time pass-
ing by, volumes and open interest being relatively low
or high for specific options being traded, wide or nar-
row bid-ask spreads, transaction costs, taxes, funding
liquidity, market liquidity, the stock market the un-
derlying is being traded in and the asset class being
analysed.
The best improvement that can be done for this

study is to carry out various regression analyses to
see which os all these factors are statistically signif-
icant for various confidence intervals with respect to
the performance of the models.
Moreover, there could be a comparison of the Hes-

ton, SABR and Monte Carlo models to other more so-
phisticated ones, such as the Heston-Nandi model and
the SVJJ construction methodology. By using models
such as the SVJJ we can allow for jumps in the stock
price and in volatility to exist. We would therefore be
able to see whether such models are e↵ectively more
precise than more standard ones for stock jumps, or
also for instances where the stock price moves by less
than 5%.
However, the main conclusion of the empirical stud-

ies carried out in this research paper is that if the an-
alyst has a limited amount of time and if he can use
only one of the three models analysed in this research
paper to carry out studies for stocks of various sectors,
he/she should then use the SABR model.
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Appendix A

The following code shows the calibration for the SABR parameters (↵, �, ⇢, ⌫) obtained form averaging the
implied volatilities after the underlying price movement has been in the same range twice (in this case, after the
moment after the underlying has moved for the second time between -5% and -1%) for a capital depreciation of
3.80% registered on April 7th 2016, with the underlying price reaching the $40.27 figure:

global impvol; global strike; global T; global F0; global r;

x0=[.5,.5,.5,.05,.5];
lb = [0, 0, 0, 0, -.9];
ub = [1, 100, 1, .5, .9];
M=10000;
F0=40.27; r=0.0025;

x = xlsread( ’C.xlsx’, ’Data Call -5 to -1 3’);

%Calibration of the SABR parameters

Settle = ’07-Apr-2016’;
ExerciseDate = ’20-May-2016’;
ExerciseDate2 = ’16-Sep-2016’;
ExerciseDate3 = ’20-Jan-2017’;
ExerciseDate4 = ’19-Jan-2018’;

MarketStrikes = [35 40 45 50 55]’/100;
MarketVolatilities =x(:,2);
MarketVolatilities2 =x(:,3);
MarketVolatilities3 =x(:,4);
MarketVolatilities4 =x(:,5);

CurrentForwardValue = F0/100;

%FIRST MATURITY - Method 1

Beta1 = 0.5;

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities - ...
blackvolbysabr(X(1), Beta1, X(2), X(3), Settle, ...
ExerciseDate, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Alpha1 = X(1);
Rho1 = X(2);
Nu1 = X(3);

% Display calibrated parameters
C = Alpha1 Beta1 Rho1 Nu1;
CalibratedPrameters = cell2table(C,...
’VariableNames’,’Alpha’ ’Beta’ ’Rho’ ’Nu’,...
’RowNames’,’Maturity 1’)

%SECOND MATURITY - Method 2
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Beta2 = 0.5;

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities2 - ...
blackvolbysabr(X(1), Beta2, X(2), X(3), Settle, ...
ExerciseDate2, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Alpha2 = X(1);
Rho2 = X(2);
Nu2 = X(3);

% Display calibrated parameters
C = Alpha2 Beta2 Rho2 Nu2;
CalibratedPrameters = cell2table(C,...
’VariableNames’,’Alpha’ ’Beta’ ’Rho’ ’Nu’,...
’RowNames’,’Maturity 2’)

%THIRD MATURITY - Method 3

Beta3 = 0.5;

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities3 - ...
blackvolbysabr(X(1), Beta3, X(2), X(3), Settle, ...
ExerciseDate3, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Alpha3 = X(1);
Rho3 = X(2);
Nu3 = X(3);

% Display calibrated parameters
C = Alpha3 Beta3 Rho3 Nu3;
CalibratedPrameters = cell2table(C,...
’VariableNames’,’Alpha’ ’Beta’ ’Rho’ ’Nu’,...
’RowNames’,’Maturity 3’)

%FOURTH MATURITY - Method 4

Beta4 = 0.5;

% Calibrate Alpha, Rho, and Nu
objFun = @(X) MarketVolatilities4 - ...
blackvolbysabr(X(1), Beta4, X(2), X(3), Settle, ...
ExerciseDate4, CurrentForwardValue, MarketStrikes);

X = lsqnonlin(objFun, [0.5 0 0.5], [0 -1 0], [Inf 1 Inf]);

Alpha4 = X(1);
Rho4 = X(2);
Nu4 = X(3);

% Display calibrated parameters
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C = Alpha4 Beta4 Rho4 Nu4;
CalibratedPrameters = cell2table(C,...
’VariableNames’,’Alpha’ ’Beta’ ’Rho’ ’Nu’,...
’RowNames’,’Maturity 4’)

The following figure shows the various Excel worksheets to make the SABR parameters calibration work:

Figure 301: Data Call -5 to -1 1

Figure 302: Data Call -5 to -1 2

Figure 303: Data Call -5 to -1 3
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Appendix B

The following appendix shows the code to the Monte Carlo simulation to find both option prices and implied
volatilities (through the use of the Black and Scholes formula), carried out on excel:

Sub MonteCarlo()

nsim = Cells(3, 7)

p1 = 0
p2 = 0
p3 = 0
p4 = 0
p5 = 0
p6 = 0
p7 = 0
p8 = 0
p9 = 0
p10 = 0
p11 = 0
p12 = 0
p13 = 0
p14 = 0
p15 = 0
p16 = 0
p17 = 0
p18 = 0
p19 = 0
p20 = 0
p21 = 0
p22 = 0
p23 = 0
p24 = 0

p1 squared = 0
p2 squared = 0
p3 squared = 0
p4 squared = 0
p5 squared = 0
p6 squared = 0
p7 squared = 0
p8 squared = 0
p9 squared = 0
p10 squared = 0
p11 squared = 0
p12 squared = 0
p13 squared = 0
p14 squared = 0
p15 squared = 0
p16 squared = 0
p17 squared = 0
p18 squared = 0
p19 squared = 0
p20 squared = 0
p21 squared = 0
p22 squared = 0
p23 squared = 0
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p24 squared = 0

Cells.Select
ActiveSheet.Calculate
Application.ScreenUpdating = False

For i = 1 To nsim
Range(“F13:Z42”).Select
ActiveSheet.Calculate

new p1 = Cells(21, 21)
new p2 = Cells(22, 21)
new p3 = Cells(23, 21)
new p4 = Cells(24, 21)
new p5 = Cells(21, 22)
new p6 = Cells(22, 22)
new p7 = Cells(23, 22)
new p8 = Cells(24, 22)
new p9 = Cells(21, 23)
new p10 = Cells(22, 23)
new p11 = Cells(23, 23)
new p12 = Cells(24, 23)
new p13 = Cells(21, 24)
new p14 = Cells(22, 24)
new p15 = Cells(23, 24)
new p16 = Cells(24, 24)
new p17 = Cells(21, 25)
new p18 = Cells(22, 25)
new p19 = Cells(23, 25)
new p20 = Cells(24, 25)
new p21 = Cells(21, 26)
new p22 = Cells(22, 26)
new p23 = Cells(23, 26)
new p24 = Cells(24, 26)

p1 = p1 + new p1
p2 = p2 + new p2
p3 = p3 + new p3
p4 = p4 + new p4
p5 = p5 + new p5
p6 = p6 + new p6
p7 = p7 + new p7
p8 = p8 + new p8
p9 = p9 + new p9
p10 = p10 + new p10
p11 = p11 + new p11
p12 = p12 + new p12
p13 = p13 + new p13
p14 = p14 + new p14
p15 = p15 + new p15
p16 = p16 + new p16
p17 = p17 + new p17
p18 = p18 + new p18
p19 = p19 + new p19
p20 = p20 + new p20
p21 = p21 + new p21
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p22 = p22 + new p22
p23 = p23 + new p23
p24 = p24 + new p24

p1 squared = p1 squared+ new
p

1 ⇤ new
p

1
p2 squared = p2 squared+ new

p

2 ⇤ new
p

2
p3 squared = p3 squared+ new

p

3 ⇤ new
p

3
p4 squared = p4 squared+ new

p

4 ⇤ new
p

4
p5 squared = p5 squared+ new

p

5 ⇤ new
p

5
p6 squared = p6 squared+ new

p

6 ⇤ new
p

6
p7 squared = p7 squared+ new

p

7 ⇤ new
p

7
p8 squared = p8 squared+ new

p

8 ⇤ new
p

8
p9 squared = p9 squared+ new

p

9 ⇤ new
p

9
p10 squared = p10 squared+ new

p

10 ⇤ new
p

10
p11 squared = p11 squared+ new

p

11 ⇤ new
p

11
p12 squared = p12 squared+ new

p

12 ⇤ new
p

12
p13 squared = p13 squared+ new

p

13 ⇤ new
p

13
p14 squared = p14 squared+ new

p

14 ⇤ new
p

14
p15 squared = p15 squared+ new

p

15 ⇤ new
p

15
p16 squared = p16 squared+ new

p

16 ⇤ new
p

16
p17 squared = p17 squared+ new

p

17 ⇤ new
p

17
p18 squared = p18 squared+ new

p

18 ⇤ new
p

18
p19 squared = p19 squared+ new

p

19 ⇤ new
p

19
p20 squared = p20 squared+ new

p

20 ⇤ new
p

20
p21 squared = p21 squared+ new

p

21 ⇤ new
p

21
p22 squared = p22 squared+ new

p

22 ⇤ new
p

22
p23 squared = p23 squared+ new

p

23 ⇤ new
p

23
p24 squared = p24 squared+ new

p

24 ⇤ new
p

24

Cells(4, 7) = i
Next i

Application.ScreenUpdating = True

std dev1 = Sqr((nsim ⇤ p1 squared� p1 ⇤ p1)/(nsim ⇤ (nsim� 1)))
std dev2 = Sqr((nsim ⇤ p2 squared� p2 ⇤ p2)/(nsim ⇤ (nsim� 1)))
std dev3 = Sqr((nsim ⇤ p3 squared� p3 ⇤ p3)/(nsim ⇤ (nsim� 1)))
std dev4 = Sqr((nsim ⇤ p4 squared� p4 ⇤ p4)/(nsim ⇤ (nsim� 1)))
std dev5 = Sqr((nsim ⇤ p5 squared� p5 ⇤ p5)/(nsim ⇤ (nsim� 1)))
std dev6 = Sqr((nsim ⇤ p6 squared� p6 ⇤ p6)/(nsim ⇤ (nsim� 1)))
std dev7 = Sqr((nsim ⇤ p7 squared� p7 ⇤ p7)/(nsim ⇤ (nsim� 1)))
std dev8 = Sqr((nsim ⇤ p8 squared� p8 ⇤ p8)/(nsim ⇤ (nsim� 1)))
std dev9 = Sqr((nsim ⇤ p9 squared� p9 ⇤ p9)/(nsim ⇤ (nsim� 1)))
std dev10 = Sqr((nsim ⇤ p10 squared� p10 ⇤ p10)/(nsim ⇤ (nsim� 1)))
std dev11 = Sqr((nsim ⇤ p11 squared� p11 ⇤ p11)/(nsim ⇤ (nsim� 1)))
std dev12 = Sqr((nsim ⇤ p12 squared� p12 ⇤ p12)/(nsim ⇤ (nsim� 1)))
std dev13 = Sqr((nsim ⇤ p13 squared� p13 ⇤ p13)/(nsim ⇤ (nsim� 1)))
std dev14 = Sqr((nsim ⇤ p14 squared� p14 ⇤ p14)/(nsim ⇤ (nsim� 1)))
std dev15 = Sqr((nsim ⇤ p15 squared� p15 ⇤ p15)/(nsim ⇤ (nsim� 1)))
std dev16 = Sqr((nsim ⇤ p16 squared� p16 ⇤ p16)/(nsim ⇤ (nsim� 1)))
std dev17 = Sqr((nsim ⇤ p17 squared� p17 ⇤ p17)/(nsim ⇤ (nsim� 1)))
std dev18 = Sqr((nsim ⇤ p18 squared� p18 ⇤ p18)/(nsim ⇤ (nsim� 1)))
std dev19 = Sqr((nsim ⇤ p19 squared� p19 ⇤ p19)/(nsim ⇤ (nsim� 1)))
std dev20 = Sqr((nsim ⇤ p20 squared� p20 ⇤ p20)/(nsim ⇤ (nsim� 1)))
std dev21 = Sqr((nsim ⇤ p21 squared� p21 ⇤ p21)/(nsim ⇤ (nsim� 1)))
std dev22 = Sqr((nsim ⇤ p22 squared� p22 ⇤ p22)/(nsim ⇤ (nsim� 1)))
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std dev23 = Sqr((nsim ⇤ p23 squared� p23 ⇤ p23)/(nsim ⇤ (nsim� 1)))
std dev24 = Sqr((nsim ⇤ p24 squared� p24 ⇤ p24)/(nsim ⇤ (nsim� 1)))

Cells(26, 21) = p1 / nsim
Cells(27, 21) = p2 / nsim
Cells(28, 21) = p3 / nsim
Cells(29, 21) = p4 / nsim
Cells(26, 22) = p5 / nsim
Cells(27, 22) = p6 / nsim
Cells(28, 22) = p7 / nsim
Cells(29, 22) = p8 / nsim
Cells(26, 23) = p9 / nsim
Cells(27, 23) = p10 / nsim
Cells(28, 23) = p11 / nsim
Cells(29, 23) = p12 / nsim
Cells(26, 24) = p13 / nsim
Cells(27, 24) = p14 / nsim
Cells(28, 24) = p15 / nsim
Cells(29, 24) = p16 / nsim
Cells(26, 25) = p17 / nsim
Cells(27, 25) = p18 / nsim
Cells(28, 25) = p19 / nsim
Cells(29, 25) = p20 / nsim
Cells(26, 26) = p21 / nsim
Cells(27, 26) = p22 / nsim
Cells(28, 26) = p23 / nsim
Cells(29, 26) = p24 / nsim

End Sub

The following figure shows the respective Excel worksheet to make the Monte Carlo method work, with all the
given parameters:
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Figure 304: Monte Carlo worksheet - Citigroup
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Appendix C

The following appendix shows the MATLAB 2016 code used to find the Heston and SABR implied volatilities,
Heston and SABR option prices and plot them as well as the Monte Carlo implied volatilities and prices and market
implied volatilities and prices found on the relevant Yahoo! Finance website (example showing the calculation of
Heston and SABR call implied volatilities and prices for Citigroup in 1, 5, 9 and 21 months, strikes (per share) at
$35, $40, $45, $50, $55; with spot price equal to $40.27 per share (closing of business day April 7th 2016 for a daily
capital depreciation of 3.80%)):

global impvol; global strike; global T; global F0; global r;

x0=[.5,.5,.5,.05,.5];
lb = [0, 0, 0, 0, -.9];
ub = [1, 100, 1, .5, .9];
M=10000;
F0=40.27; r=0.0025;

x = xlsread( ’C.xlsx’, ’Heston and SABR Call -5 to -1’);

T=x(:,5)/365;
T2=x(:,10)/365;
T3=x(:,15)/365;
T4=x(:,20)/365;
strike=x(:,1);
strike2=x(:,6);
strike3=x(:,11);
strike4=x(:,16);
impvol=x(:,4);
impvol2=x(:,9);
impvol3=x(:,14);
impvol4=x(:,19);
priceoption=x(:,3);
priceoption2=x(:,8);
priceoption3=x(:,13);
priceoption4=x(:,18);

%Optimization
y = lsqnonlin(@costf2,x0,lb,ub);

for k=1:length(T);
%Initial asset price
shes(1)=F0;
%Number of Time Steps,time step size
N=round(T(k)/(1/360));dt=T(k)/N;

%Heston Parameters
vhes(1)=y(1); kappa=y(2); theta=y(3); vsigma=y(4);rho=y(5); simPath=0;

%Simulation of Heston Model
for i = 1:M
for j=1:N
r1 = randn;
r2 = rho*r1+sqrt(1-rho*rho)*randn;
shes(j+1)=shes(j)*exp((-0.5*vhes(j))*dt+sqrt(vhes(j))*sqrt(dt)*r1);
vhes(j+1)=vhes(j)*exp...
(((kappa*(theta - vhes(j))-0.5*vsigma*vsigma)*dt)/vhes(j) + vsigma*(1/sqrt(vhes(j)))*sqrt(dt)*r2);

end
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end
modhes(k)=HestonCall(shes(1),strike(k),r,T(k),vhes(1),kappa,theta,vsigma,rho,0);
hesimpvol(k)=blkimpv(shes(1), strike(k), r, T(k), modhes(k));
end

%Output optimized Parameters
y;

for k=1:length(T2);
%Initial asset price
shes(1)=F0;
%Number of Time Steps,time step size
N=round(T2(k)/(1/360));dt=T2(k)/N;

%Heston Parameters
vhes(1)=y(1); kappa=y(2); theta=y(3); vsigma=y(4);rho=y(5); simPath=0;

%Simulation of Heston Model
for i = 1:M
for j=1:N
r1 = randn;
r2 = rho*r1+sqrt(1-rho*rho)*randn;
shes(j+1)=shes(j)*exp((-0.5*vhes(j))*dt+sqrt(vhes(j))*sqrt(dt)*r1);
vhes(j+1)=vhes(j)*exp...
(((kappa*(theta - vhes(j))-0.5*vsigma*vsigma)*dt)/vhes(j) + vsigma*(1/sqrt(vhes(j)))*sqrt(dt)*r2);

end
end
modhes2(k)=HestonCall(shes(1),strike2(k),r,T2(k),vhes(1),kappa,theta,vsigma,rho,0);
hesimpvol2(k)=blkimpv(shes(1), strike2(k), r, T2(k), modhes2(k));
end

%Output optimized Parameters
y;

for k=1:length(T3);
%Initial asset price
shes(1)=F0;
%Number of Time Steps,time step size
N=round(T3(k)/(1/360));dt=T3(k)/N;

%Heston Parameters
vhes(1)=y(1); kappa=y(2); theta=y(3); vsigma=y(4);rho=y(5); simPath=0;

%Simulation of Heston Model
for i = 1:M
for j=1:N
r1 = randn;
r2 = rho*r1+sqrt(1-rho*rho)*randn;
shes(j+1)=shes(j)*exp((-0.5*vhes(j))*dt+sqrt(vhes(j))*sqrt(dt)*r1);
vhes(j+1)=vhes(j)*exp...
(((kappa*(theta - vhes(j))-0.5*vsigma*vsigma)*dt)/vhes(j) + vsigma*(1/sqrt(vhes(j)))*sqrt(dt)*r2);

end
end
modhes3(k)=HestonCall(shes(1),strike3(k),r,T3(k),vhes(1),kappa,theta,vsigma,rho,0);
hesimpvol3(k)=blkimpv(shes(1), strike3(k), r, T3(k), modhes3(k));
end
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%Output optimized Parameters
y;

for k=1:length(T4);
%Initial asset price
shes(1)=F0;
%Number of Time Steps,time step size
N=round(T4(k)/(1/360));dt=T4(k)/N;

%Heston Parameters
vhes(1)=y(1); kappa=y(2); theta=y(3); vsigma=y(4);rho=y(5); simPath=0;

%Simulation of Heston Model
for i = 1:M
for j=1:N
r1 = randn;
r2 = rho*r1+sqrt(1-rho*rho)*randn;
shes(j+1)=shes(j)*exp((-0.5*vhes(j))*dt+sqrt(vhes(j))*sqrt(dt)*r1);
vhes(j+1)=vhes(j)*exp...
(((kappa*(theta - vhes(j))-0.5*vsigma*vsigma)*dt)/vhes(j) + vsigma*(1/sqrt(vhes(j)))*sqrt(dt)*r2);

end
end
modhes4(k)=HestonCall(shes(1),strike4(k),r,T4(k),vhes(1),kappa,theta,vsigma,rho,0);
hesimpvol4(k)=blkimpv(shes(1), strike4(k), r, T4(k), modhes4(k));
end

%Output optimized Parameters
y;

pricedata1= [modhes’-priceoption, modhes2’-priceoption2, modhes3’-priceoption3, modhes4’-priceoption4];

voldata=[hesimpvol’, hesimpvol2’, hesimpvol3’, hesimpvol4’];

t = [1.5, 5.5, 9.5, 21.5];
w = [F0/35, F0/40, F0/45, F0/50, F0/55];

surf(t,w,voldata)

xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’Heston Implied Volatility’, ’FontWeight’, ’bold’)
colorbar

figure; surf(t,w,pricedata1)

xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’Heston Price - Market Price’, ’FontWeight’, ’bold’)
colorbar

%SABR Model

Settle = ’07-Apr-2016’;
ExerciseDate = ’20-May-2016’;
ExerciseDate2 = ’16-Sep-2016’;
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ExerciseDate3 = ’20-Jan-2017’;
ExerciseDate4 = ’19-Jan-2018’;

MarketStrikes = [35 40 45 50 55]’/100;
MarketVolatilities =x(:,4);
MarketVolatilities2 =x(:,9);
MarketVolatilities3 =x(:,14);
MarketVolatilities4 =x(:,19);

CurrentForwardValue = F0/100;

PlottingStrikes = [35 40 45 50 55]’/100;

% Compute volatilities for model calibrated by Method 1
ComputedVols = blackvolbysabr(0.20, 0.5, -0.59, 2.41, Settle, ...
ExerciseDate, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 2
ComputedVols2 = blackvolbysabr(0.21, 0.5, -0.76, 1.74, Settle, ...
ExerciseDate2, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 3
ComputedVols3 = blackvolbysabr(0.19, 0.5, -0.64, 0.84, Settle, ...
ExerciseDate3, CurrentForwardValue, PlottingStrikes);

% Compute volatilities for model calibrated by Method 4
ComputedVols4 = blackvolbysabr(0.21, 0.5, -0.65, 0.61, Settle, ...
ExerciseDate4, CurrentForwardValue, PlottingStrikes);

t = [1.5, 5.5, 9.5, 21.5];
z = [ComputedVols, ComputedVols2, ComputedVols3, ComputedVols4];

figure; surf(t,w,z)
xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’SABR Implied Volatility’, ’FontWeight’, ’bold’)
colorbar

BlackScholesPrice=blsprice(F0,strike,r,T,ComputedVols);
BlackScholesPrice2=blsprice(F0,strike2,r,T2,ComputedVols2);
BlackScholesPrice3=blsprice(F0,strike3,r,T3,ComputedVols3);
BlackScholesPrice4=blsprice(F0,strike4,r,T4,ComputedVols4);

bspriceSABR = BlackScholesPrice.’;
bspriceSABR2 = BlackScholesPrice2.’;
bspriceSABR3 = BlackScholesPrice3.’;
bspriceSABR4 = BlackScholesPrice4.’;

NewDi↵erence= [bspriceSABR’-priceoption, bspriceSABR2’-priceoption2, bspriceSABR3’-priceoption3,
bspriceSABR4’-priceoption4];

figure; surf(t,w,NewDi↵erence)
xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’SABR Price - Market Price’, ’FontWeight’, ’bold’)
colorbar
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%Market Implied volatilities

a = xlsread( ’C.xlsx’, ’IV Call -5 to -1’);

strike=a(:,1);
impvol=a(:,3);
impvol2=a(:,5);
impvol3=a(:,7);
impvol4=a(:,9);

t = [1.5, 5.5, 9.5, 21.5];
z = [impvol, impvol2, impvol3, impvol4];

figure; surf(t,w,z)

xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’Market Implied Volatility’, ’FontWeight’, ’bold’)
colorbar

%Monte Carlo Implied volatilities and Prices

x = xlsread( ’C.xlsx’, ’MC Call -5 to -1’);

impvol=x(:,2);
impvol2=x(:,3);
impvol3=x(:,4);
impvol4=x(:,5);

MCprice=x(:,8);
MCprice2=x(:,9);
MCprice3=x(:,10);
MCprice4=x(:,11);

v = [impvol, impvol2, impvol3, impvol4];
NewDi↵erence2= [MCprice-priceoption, MCprice2-priceoption2, MCprice3-priceoption3, MCprice4-priceoption4];

figure; surf(t,w,v)

xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’Monte Carlo Implied Volatility’, ’FontWeight’, ’bold’)
colorbar

figure; surf(t,w,NewDi↵erence2)

xlabel(’Months to maturity’, ’FontWeight’, ’bold’)
ylabel(’Moneyness’, ’FontWeight’, ’bold’)
zlabel(’Monte Carlo Price - Market Price’, ’FontWeight’, ’bold’)
colorbar

The following figures portray the respective Excel worksheets to make the previous work, with all the previously
stated parameters:
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Figure 305: Heston and SABR Call -5 to -1
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Figure 306: MC Call -5 to -1
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Figure 307: IV Call -5 to -1

The following two codes are “hidden” codes on which the code previously given in this appendix is based on:
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Code 1 - “CF SVj”:

function fj=CF SVj(xt,vt,tau,mu,a,uj,bj,rho,sig,phi)

xj = bj - rho.*sig.*phi.*i;
dj = sqrt( xj.*xj - (sig.*sig).*( 2.*uj.*phi.*i - phi.*phi ) );
gj = ( xj+dj )./( xj-dj );
D = ( xj+dj )./(sig.*sig).* ( 1-exp(dj.*tau) )./( 1-gj.*exp(dj.*tau) ) ;
xx = ( 1-gj.*exp(dj.*tau) )./( 1-gj );
C = mu.*phi.*i.*tau + a./( sig.*sig ) .* ( (xj+dj) .* tau - 2.*log(xx) );
fj = exp( C + D.*vt + i.*phi.*xt );

Code 2 - “costf2”:

function [cost]=costf2(x)
global impvol; global strike; global T; global F0; global r;

for i=1:length(T)
cost(i)=blsprice(F0,strike(i),r,T(i),impvol(i))-HestonCall(F0,strike(i),r,T(i),x(1),x(2),x(3),x(4),x(5),0);
end

Code 3 - “HestonCall”:

function C=HestonCall(St,K,r,T,vt,kap,th,sig,rho,lda)

dphi=0.01;
maxphi=50;
phi=(eps:dphi:maxphi)’;

f1 = CF SVj(log(St),vt,T,0,kap*th,0.5,kap+lda-rho*sig,rho,sig,phi);
P1 = 0.5+(1/pi)*sum(real(exp(-i*phi*log(K)).*f1./(i*phi))*dphi);
f2 = CF SVj(log(St),vt,T,0,kap*th,-0.5,kap+lda,rho,sig,phi);
P2 = 0.5+(1/pi)*sum(real(exp(-i*phi*log(K)).*f2./(i*phi))*dphi);
C = St*P1 -K*exp(-r*T)*P2;
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