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Pricing Down&In puts  

 

Abstract 

 

In this paper, we look to price down&in puts, especially in the case of an assymetric volatility 

smile and with a focus on symmetry method. The aim is to assess the extent of the 

discrepancy in pricing relative to the price obtained when using a symmetric volatility smile.  

We first define this option, and price it using Monte-Carlo, PDE, image methods and lastly 

closed-form formulae in the Black&Scholes context ; we then build an asymmetric volatility 

smile by adding jumps and stochastic volatility and re-price the option. Lastly, we compare 

the prices obtained and try to establish the robustness of the symmetry method in this second 

context. 

 

I Introdution 

What barrier options are 

A down&in (D&I) put is an exotic variant of a standard (plain vanilla, european)  put : it is a 

put that activates, i.e. starts existing as a standard put, if and only if the underlying asset price 

crosses a predefined threshold (called the barrier) by above, at anytime during the life of the 

option. 

So its payoff at maturity is defined by: max(0;K-ST)*1{min St <= B} where : 

K is the strike 

St is the spot at time t ϵ [0;T] 

1{A} is the indicator function of event A : worth 1 if A happens, else 0 

B is the barrier 

From this definition, one can immediately notice that obviously the barrier must be set below 

S0 (the underlying spot price at inception), else the D&I put is nothing else but a standard put. 

We also see that studying the law of the minimum of the underlying asset is a natural way of 

studying this type of option. 

We say that this put has an american barrier whereas the exercise-style is european (the latter 

can be american, but we will focus on european-style options here), because the barrier can be 

breached at any time between inception and maturity, but exercise can only happen at 

maturity. The D&I put belongs to the first-generation exotic options, which started being 
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traded in the 1990s. Then all sorts of variants emerged, only bounded by imagination, for 

example we started to see traded on a regular basis double barrier options in a context of 

emergence of structured products tailored for clients. For instance, a double knock-out option 

shares similarities with a short straddle position in terms of market view.  

An important question for investors in barrier options is the frequency at which the spot price 

is observed, as it impacts the likelihood of the option knocking in/out. Broadie, Glasserman 

and Kou provide a means of adjusting the closed-form formula for cases where price 

observations are discrete, in « A continuity correction for discrete barrier options » which we 

will use in our pricing.  

Another issue is the potentiality of price manipulation, especially regarding underlying assets 

of poor liquidity, against which some second-generation options like the « Parisian » options 

were designed : their payoff has more constraints relative to a barrier option in that the 

underlying price must remain below/above the barrier for a certain time period (either 

cumulative or in a row) in order for the option to activate/remain active, while a barrier option 

does not impose any conditions regarding the time during which the barrier must be breached. 

Therefore, intuitively « in » parisian options are cheaper than « in » barrier options and 

« out » parisian options are more expensive than « out » barrier options. 

The down&in put is, among the eight possible first-generation barrier options (call/put, 

down/up, in/out), more traded than most others, usually by very bearish investors and/or by 

investors looking for an insurance against a market crash.  

In practice, « in » options rarely have cash rebates so we will assume the rebate is null in this 

paper. 

 

Why they exist 

As highlighted by E.Derman in « The ins and outs of barrier options », there are three main 

reasons to use barrier options instead of standard ones : 

1) They may match investors’ anticipations of market behaviour more closely than 

standard options  

Consequently, they enable an investor to avoid paying for scenarios which he thinks 

are very unlikely. In our case, a D&I put spares the cost of all the scenarios where the 

spot over the life of the option on average moderately decreases (without crossing the 

barrier), i.e. scenarios in which a standard put of same features would end up in the 

money (ITM) while a D&I put would expire worthless. 

 

2) They may match hedging needs more closely  

Suppose you own a given stock and you set a stop loss whenever the stock loses 10% 

relative to the price you bought it at. A down&out (D&O) put struck at 90% of your 
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purchase price is here more efficient than a standard put of same features, as it also 

hedges you against a decline but ceases to exist as soon as your stop loss is triggered. 

 

 

The main advantage of barrier options is that : 

 

3) Their premia are lower than corresponding standard options 

This is intuitive : constraints are put on the payoff, hence it must be that these options 

are cheaper. 

 

4) Barrier options can offer more transparency than other exotic options 

If an investor has a market view sophisticated enough to qualify for a barrier option or 

another exotic derivative that also meets his stance, she/he may opt for the barrier 

option as it will often be more transparent than  another suitable derivative. 

E.g., say the investor has the following directional and chronological view : she/he 

reckons that the spot will very soon rise a lot and then, say a month later, will fall 

sharply. At least two options may satisfy her/his needs : a lookback put with floating 

strike of tenor one month (where the strike is the maximum of the underlying over the 

life of the option), and an U&I put. 

She/he may prefer the U&I put as it is easier to reprice independently and to assess its 

price ; the lookback option is deemed more exotic.   

At this point, one may have noticed that for a D&I put to meet the above conditions and make 

sense, the barrier has to be set below the strike : indeed, it would otherwise be a disguised 

standard put, because all scenarios where the standard put is ITM would imply that the 

corresponding D&I put also is ITM ; now to obtain a cheaper premium there must exist 

scenarios where a standard put is ITM while a D&I put is not. On the markets, although these 

products are traded over-the-counter (OTC), the barrier level is usually set around 75% or 

80% of the strike. 

Payoff profile and sensitivities 

Unlike « out » options, the D&I put is straightforward in the sense that its payoff is not 

subject to opposite effects (like an U&O call or a D&O put which have tensions between 

getting better moneyness and approaching the deactivating barrier). Its holder therefore 

doesn’t experience vega negative or theta positive periods, and its delta doesn’t change sign. 

However, the hedging (especially the delta-hedging) can still be difficult, as close to maturity 

and slightly above the barrier, the delta is massively negative which implies holding huge 

quantities of the underlying (possibly more than the notional of the option) and getting ready 

to sell at a loss large quantities of it as soon as the barrier is breached. Various techniques 

(such as « barrier shifting ») to mitigate the gap risk exist. 
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See the graphical representation of the payoff, the delta and the gamma from the 

aforementioned book by E.Derman : 

 

 

 

 

Below barrier, the payoff is that of a 

standard put struck at 100. The 

farther (above) from barrier spot is, 

the lower the probability of knock-in 

and the premium. At maturity, 

payoff is a straight line close in 

shape to the upper dashed line 

shown between strikes 70 and 80.  

As maturity approaches, delta-

hedging (slightly above barrier) is 

more and more difficult and delta is 

becoming more and more negative. 

At maturity and at the barrier, delta 

is infinite. 

Unlike a standard put, gamma is not 

highest at the money (ATM). At 

maturity and at the barrier, it is 

infinite. 
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There exists one interesting limit case : imagine that the underlying asset has a poor liquidity, 

in other words that the price impact of trading it is relatively strong. Second, imagine we live 

in a world where many traders have the same long D&I delta-hedged put position with big 

notionals at stake, while their client counterparties wish to take some unhedged exposure by 

not delta-hedging ; third, these traders delta-hedge very often. Then, in the extreme case, the 

D&I put will expire worthless almost surely ! (Unless, for instance, the price experiences a 

large enough downward jump). 

Indeed, the traders are delta-negative so their synchronized delta-hedging has an attractive 

influence on the spot level : whenever spot increases, they sell and when spot falls, they buy. 

Because the price impact is strong and the notionals hence the amounts of spot traded are 

huge, the price impact is strong and the spot is virtually pinned to some level close to the spot 

at inception. Provided the barrier is not too close from this level, and in the absence of jumps, 

the barrier will remain unhit so the barrier option actually has virtually no value. Graphically, 

the evolution of the spot would follow some cobweb plot fashion. 

Conversely, had the traders been all short the D&I put, their delta-hedging would have had a 

repulsive effect on the spot,  giving it some volatility. The barrier would very likely be 

breached. So the D&I put would have the same value as a standard put of same features.  

 

II Pricing D&I puts within the standard framework 

Implicitly, we work here in the equity world, particularly on single stock options. We will 

start by pricing the D&I put in the standard, B&S context. This will help us see to what extent 

this structure appreciates when we switch to a stochastic volatility and jumps framework. 

Monte-Carlo simulation 

We run 50,000 simulations using the following parameters : 

Strike 100 

Spot 100 

Rebate 0 

Time to maturity 1 year 

Dividend yield 0% 

Constant, annual volatility  20% 

Constant, annual continuously compounded  

risk-free rate  

2% 

Barrier 80 

Frequency of spot level observation Daily 

Corrected barrier 80.49 

 

In order to get a more accurate pricing and to be able to compare our MC pricing to closed-

form formulae, which assume continuous monitoring of the spot price, we used the continuity 

correction given by Broadie, Glasserman and Kou given in « A continuity correction for 
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discrete barrier options ». They provide a correction that accounts for a discrete spot-

monitoring instead of a continuous one. For a D&I option, the barrier, say B, becomes 

B*exp(0.5826*σ*Ѵ(T/m)) where m is the number of spot observations and T is the maturity 

expressed in years. 

We thus get in the present scenario a corrected barrier of about 80.49. 

Intuitively, any « in » option will get its premium lowered if the spot-monitoring is discrete 

instead of continuous, as there is less chance of the barrier being hit because we ignore some 

times where it could be so. Therefore, because we study here in particular a « down » option, 

the continuity correction consistently gives a higher barrier.  

In order to improve our random numbers generation in the MC simulation, we used stratified 

sampling : we decomposed the [0;1] interval into ten equally-sized sub-intervals (i.e. from 

[0;0.1] to [0.9;1]) and ensured that inside each of the ten sub-intervals there are ten percent of 

the random numbers (which are needed to draw normal values).  

Lastly, we assume that any day before maturity is a trading day, i.e. that in a year there are 

365 (or 366) trading days and not 252, to be able to compare our result to the closed-form 

formulae once again. 

Here are the results obtained : 

 Price of the standard vanilla european put : 6.91 (standard error=0.04) (the exact, B&S 

value is 6.936) 

 Price of the D&I put : 5.04 (standard error= 0.04) 

 As a consistency check, we also priced the D&O put of same features and found 1.87 

(standard error 0.02), which is consistent with the barrier options « parity » 

relationship : D&O + D&I = Vanilla option. 

To get the standard put price, we simulated and averaged 50,000 expiry values using the B&S 

parameters in the above grid. 

To get the D&I and D&O put prices, we simulated 50,000 times the whole spot path which 

itself contains 365 successive prices, i.e. our MC simulation worked by daily increments, 

using the well-known equation that governs the evolution of the spot price :  

 

St+1 = St*exp((r-d-σ²/2)*Δt + σ*z*Ѵ(Δt))  for all t between inception and maturity, where : 

r = constant, annual, continuously compounded  risk-free rate 

d = continuous, annual dividend yield 

σ = constant, annual volatility 

Δt = time increment (=1/365 with maturity 1 year and daily increments) 

z = a random draw from a standard normal distribution (to simulate the brownian motion) 
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The prices found are theoretical. In reality, the market quotes for these options would likely 

be higher due to the downward sloping volatility smile in the equity world, reflecting the fact 

that tail events, in particular crashes, are actually more likely than what the lognormal 

distribution used predicts. A D&I put can be seen as an insurance against a market crash.  

 

We could of course estimate some greeks, e.g. the delta, by repricing the option with this time 

a small increment of the spot, then taking the difference of option prices over the spot 

increment, with backward, centered or forward scheme. 

 

PDE method (explicit finite differences framework) 

In this section, we use the finite differences method, hereby discretizing the partial differential 

equation followed by the price of the D&I put on a single stock paying no dividend: 

∂V/∂t + 0.5*σ²*S²*∂²V/∂S² + r*S*∂V/∂S – r*V = 0 

Where : 

V= option price 

S = underlying stock price 

r = annual risk-free rate 

σ = constant, annual volatility of the underlying stock price 

 

The above PDE is transformed into several differences equations, that are solved in an 

iterative fashion. Each of its terms is approximated below by finite differences. 

Below are the technical details of the process : 

We discretize time by creating 250 time periods, and space by creating 200 spot prices from 

Smin to Smax (in fact, we will work with log(spot) as this is more convenient for calculations) in 

a grid. A spot increment is denoted ΔS and a time increment Δt next. 

As for boundary conditions, we used the intrinsic value of the option, that is : about 0 for the 

highest spot value of the grid, at any date, and K*exp(-r*(T-t))-minspot for the smallest spot 

value of the grid. This seems a good enough approximation as deep ITM or deep OTM, the 

time value of an option is very small.  

In this method, we model the process of the underlying price S (in the risk-neutral world) by a 

standard process which will become in the second part of this study a jump and stochastic 

volatility process. We then apply Ito’s lemma to the option function to get the PDE. 
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Next, we need to approximate the terms in the PDE presented above (for all points strictly 

inside the grid): 

 dV/dS (the delta of our option) is approximated using the centered scheme (for its 

nicer mathematical properties compared to the backward and forward scheme ; the 

centered scheme is the average of the forward and backward schemes). 

Let us denote fi,j the value of our D&I put at date i and for a spot level j, then : 

dV/dS = (fi,j+1 - fi,j-1) / 2ΔS 

 

 d²V/dS² (the gamma of the option) is approximated as the derivative of the delta, 

therefore we compute the difference between the forward scheme and the backward 

scheme: 

d²V/dS² = ((fi,j+1 - fi,j) / ΔS - (fi,j - fi,j-1) / ΔS)/ ΔS 

 

 dV/dt (the theta of the option) is approximated using the forward scheme, so as to get 

a direct link between the option premium at two consecutive dates : 

dV/dt = (fi+1,j - fi,j) / Δt 

 

Because the underlying spot price follows a geometric brownian motion, we now change 

variable, and choose Z=log(S) as calculations are then simpler. 

 

We replace the three above terms in the PDE and obtain this relationship : 

 

for all fi ;j strictly inside the grid (i.e. not on a boundary):  

fi;j = Ψ+* fi+Δt ;j+Δlog(S) + Ψ0* fi+Δt ;j + Ψ-* fi+Δt ;j-Δlog(S) 

 

where : 

 

Ψ+ = (Δt/(2Δlog(S)))*(r-σ²/2) + (Δt/(2Δ(log(S)²)))*σ² 

Ψ0 = 1 – r*Δt – σ²*Δt/Δ(log(S))² 

Ψ- = – (Δt/(2Δlog(S)))*(r-σ²/2) + (Δt/(2Δ(log(S)²)))*σ² 

 

This relationship is completed by the known values on the three boundaries, i.e when i= 

maturity and/or j= log(Smin) or j= log(Smax). 

We can now solve backward in the grid (i.e. we start by using the prices at maturity, which 

are known) for the price of the D&I put at inception. 

To ensure stability of this numerical analysis scheme, we chose the spot increment Δlog(S) 

such that the three multiplicative coefficients Ψ+, Ψ0, and Ψ- remain positive (and they sum up 

to 1– r*Δt as of Lax’s theorem) and such that there is a proportional relationship between 
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Δlog(S) and ѴΔt for matters of convergence towards the right price. These coefficients are 

like the risk-neutral probabilities of states « up », « middle » and « down » in a trinomial tree. 

A key element of this scheme, that has a direct impact on the price obtained, is the size of 

Δlog(S) (i.e. the value between two consecutive spot prices). We here chose Δlog(S) = 0.022 

and Δt = 0.004 (indeed we have 250 periods in our grid, as said at the beginning of this 

section). Theoretically, the right price is obtained when both Δlog(S) and Δt converge towards 

0. 

The price found, using the same parameters as in the previous section, i.e. without using 

jumps or stochastic volatility is 5.17.  

 

The difference found with other pricing methods lies in several factors :  

 The relatively long maturity : it increases the errors made by the derivatives 

approximations thereby reducing the accuracy of the model  

 

  The spot increment chosen : it needs to be such that the multiplicative (Ψ) coefficients 

remain positive and between 0 and 1 (and ideally roughly equal to 1/3 each) but also 

such that the extreme spot values in the grid are sensible with regard to the maturity 

chosen, i.e. deltax must be basically proportional to the maturity chosen. However, the 

finite differences scheme can be quite sensitive to deltax and does not necessarily 

increase the option price linearly with deltax (increasing deltax can sometimes reduce 

the option price). To sum up, the choice of the spot increment in the grid is crucial and 

can be a source of imprecision in pricing. A usual choice is Δlog(S) = σ*Ѵ(3Δt) which 

we use here. 

 

This is why in order to test the convergence between the abovementioned Monte-Carlo 

method and the PDE method, we reduced the maturity to 15 days and found that with a 

volatility of 20%, the PD&I is virtually worthless with both methods. This doesn’t come as a 

surprise, as a volatility of 20% means the underlying stock price is « quiet », and when given 

only 15 days it virtually never hits the barrier, due to lack of time to do so and to lack of 

volatility. Actually, the PD&I value starts exceeding one cent when the volatility level is 33% 

or more, ceteris paribus, i.e. for any volatility below 33% its value is less than a cent. 

With a volatility of 50%, the Monte-Carlo method (with 50 000 simulations) and the PDE 

method (deltax=0.02) show price discrepancies of a cent, clearly showing the convergence, as 

expected. 
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Image method 

 

We first present this method, based on the findings in the paper by P.Buchen « Pricing 

european barrier options ».  

In that paper, Buchen reveals a novel way of pricing barrier options, which appears to be 

simpler than the then usual expectations methods or than the study of the law of the min/max 

of the underlying asset. The latter are mathematically-intensive, for example they require the 

determination of the risk-neutral density of the underlying asset price (in « Prices of state-

contingent claims implicit in option prices », 1978, Breeden&Litzenberger approximate the 

density by deriving twice the option premium relative to strike, then by assuming smoothness 

of the density around the strike and using a butterfly spread, lastly by assuming that the 

density is a step function, increasing then decreasing, in Riemann’s integrals style. This gives 

a clue as to the quantitative background required). In 1995, Ritchken had performed 

numerical methods of barrier option pricing using binomial and trinomial lattices, 

experiencing the drawback that the barrier level can fall between two branches of the tree, 

thus not properly accounting for the dynamics of the underlying asset. 

By contrast, Buchen’s method requires a fairly limited amount of mathematics : 

Buchen sorts the eight barrier options according to their active domain (the interval where the 

barrier has not been hit yet, e.g. [barrier ;+∞] for a down option), their expiry condition (i.e. 

what they are worth at expiry if the barrier was not hit, either a plain vanilla option, or a 

rebate, or nothing if no rebate) and their boundary condition (the value of the barrier option 

once the barrier is breached). He also decomposes vanilla options in their main components, 

i.e. their elementary constituents, which are the four elementary solutions of the B&S partial 

differential equation (PDE) presented in the previous section. 

These constituents are, for a B&S call, S(t)*ϕ(d1) and exp(-r(T-t))*ϕ(d2), and for a B&S put 

S(t)*ϕ(-d1) and exp(-r(T-t))*ϕ(-d2), where : 

d1=(log(S(t)/K)+(r+0.5*σ²)*(T-t))/(σ*Ѵ(T-t)) 

d2=d1-σ*Ѵ(T-t) 

ϕ is the standard normal cumulative function  

 

In this fashion, we get a high level of granularity and have an analytical view of the very 

components of options, and of the discrepancies between barrier options. 

Once this has been done, we have the groundwork to welcome the key contribution of the 

paper : Buchen defines, for each of the four elementary solutions of B&S PDE, their image 

solutions, which are graphically their symmetric in the log-space (that is, when considering 
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the log of the underlying price) relative to the (vertical line formed by the) barrier, i.e. the 

straight line of equation x=barrier. 

Thus, Buchen rightly uses the put-call symmetry relationship : 

 

Where b is the barrier, x the spot, t time to maturity (which is usually denoted rather T-t), and 

α= 2r/σ²-1 where r is the risk-free interest rate and σ is the underlying asset price volatility. 

The first term is a corrective term aimed at accounting for the drift, which is not symmetrical. 

The symmetry is in log space in the above formula, consequently we find indeed that 

log(b²/x)=2log(b)-log(x) is the symmetric of log(x) relative to the log of the barrier, log(b). 

These image solutions satisfy all the relations needed relative to the B&S operator. 

All barrier options can now be expressed in terms of the eight fundamental solutions (four 

plus their images). This means the volatility smile only can be used to price barrier options : 

by virtue of this method, one transforms the american feature of the barrier into an european-

only combination of options (assuming one is able to replicate the symmetric of a standard 

option). 

Also, it should be noted that thanks to parity relationships laid out by Buchen, the knowledge 

of any one of barrier options price gives knowledge of all other barrier option prices. 

Below is the premium of the D&I put expressed in terms of standard puts, themselves being 

linear combinations of two of the fundamental components described above. 

                              PD&I = PK
* 
+ Pb - Pb

*     
on its active domain i.e. for S(t) in ]b ;+

 
∞]  

 

Where :  Py is a standard put struck at y 

               Py
* 

is the symmetric of a standard put struck at y (in log space) 

Using the same parameters as in the two previous sections (Monte-Carlo and PDE), we find a 

price of the D&I put of 5.096, broken down as follows : 

PD&I(100;1 year) = 34.113 + 3.552 – 32.569 

The prices of the three put components are computed using the well-known B&S closed-form 

formula : 
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P(t) = -S(t)*ϕ(-d1) + K*exp(-r(T-t))*ϕ(-d2) for any t between 0 and T 

Where : 

d1=(log(S(t)/K)+(r+0.5*σ²)*(T-t))/(σ*Ѵ(T-t)) 

d2=d1-σ*Ѵ(T-t) 

ϕ is the standard normal cumulative function  
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Closed-form formula 

 

Let us check now how precise the three pricing methods used above are, by comparing the 

prices obtained to the price given by the closed-form formula. The latter is taken from the 

second part of « The ins and outs of barrier options » by E.Derman. 

Derman provides the formula for a D&O put that he derives from the known similarities with 

the U&O call. From this D&O price we infer the price of the D&I put of same parameters by 

using the well-known relationship : Pstandard = PD&O + PD&I 

PD&I =  Pstandard - K*exp(-r(T-t))*[Φ(-d1+σ*Ѵ(T-t)) – Φ(-X2 +σ*Ѵ(T-t)) + Φ(-

Y1+σ*Ѵ(T-t)) - Φ(-Y2+σ*Ѵ(T-t)) ] – S(t)*[ Φ(-d1) - Φ(-X2) - Φ(-Y1) + Φ(-Y2)] 

Where :      d1 is the usual B&S component, defined above  

                    X2= d1 replacing K with b, the barrier 

                    Y1= d1 replacing S/K in the log with b²/(S*K) 

                    Y2= d1 replacing S/K in the log with b/S 

The formula is thus simplified here as we are in the special case where the continuous 

dividend yield, the power alpha and the rebate are all equal to zero. 

Note that we could have used, alternatively, Derman’s observation that a D&O call (resp. an 

U&O put) is almost a call (resp. put) spread : e.g. for the call spread, the short call is held in a 

proportion equal to the corrective term introduced earlier, and its strike is equal to K*S²/b². 

By replacing the parameters chosen (see in the MC subsection) direclty into the above 

formula, we find a price of 5.096. 

The Monte-Carlo method (resp. the PDE method) therefore tend to under(resp. over) estimate 

slightly the option price, for the reasons we discussed previously, while as expected the image 

method leads to the exact price in a symmetric world. 

 

 

Let us see whether this still holds in an asymmetric context. 
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III Pricing D&I puts within an asymmetric environment 

 

This part is motivated by the deficiencies of standard frameworks like Black&Scholes, which 

hypotheses are too simplistic. This simplicity is obviously a weakness, but also a strength 

(everyone can understand it), that is why B&S is still so widespread in banks.The B&S model 

makes strong assumptions that are not reasonable, such as :  

 the ability to delta-hedge continuously and without any transaction costs 

 the underlying is not illiquid 

 any day is a trading day (this triggers problems, mainly regarding the assessment of 

volatility) 

 investors are rational 

 there are no arbitrage opportunities 

 one can short-sell a stock, and for any amount  

 the yield curve is flat 

 the underlying stock doesn’t distribute any dividend over the life of the option 

 the underlying stock price follows a lognormal distribution (this usually 

underestimates the left tail) 

 the volatility of the underlying stock price is constant through time 

 the underlying stock doesn’t experience any jumps, including default 

In the following part, we focus on the last two assumptions which appear to be critical : 

obviously, according to the political, economic and financial context through the life on an 

option, its underlying stock volatility changes (potentially a lot). Moreover, jumps are a 

recurrent phenomenon on the stock market (it is probably less so in the FX world, at least for 

major currencies, as this market is much deeper and more liquid).  For instance, one case of 

jump frequently observed is a downward jump just after a distribution of dividends, of the 

amount the dividend per share. 

In what follows, we create an environment closer to the market by adding jumps (positive, 

negative, and to default) to the underlying price dynamics as well as by implementing a 

stochastic volatility framework. We thus also build transition jumps (i.e. jumps that trigger 

another volatility regime).  

We will use the fact that some of the methods employed do not rely on symmetry arguments 

(namely, the Monte-Carlo simulation, the closed-form formula and the finite differences 

method) while the image method in essence depends on it. We should therefore be able, by 

comparing the prices obtained in this asymmetric environment, to assess the extent of the 

discrepancies, and in turn detect potential mispricing and hedging risks.  

Of course, we simplify a lot reality. For sake of simplicity, we work here on a two-regime 

model, and again on single stock options. So, we won’t be dealing with correlation here. In 

addition, whenever a jump occurs in our model, its size is known and constant. We could 

complexify the model by creating a distribution of jumps that would randomly determine the 
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size and/or the sign of jumps. Moreover, we assume that at any time over the life of the 

option, the volatility of the underlying price assumes one of only two predetermined values, 

basically corresponding to a high (resp. low) volatility regime. The jump-to-default intensity 

is set higher in the high volatility regime than in the low volatility regime, which fits best 

reality in most situations. We also assume a flat yield curve throughout, whatever the regime. 

More generally, we keep the B&S assumptions mentioned above other than those regarding 

volatility and jumps, plus note that we assume a null rebate and we continue to perform a 

continuity correction for the daily spot observations instead of continuous monitoring. 

 

Monte-Carlo simulation 

We run 100,000 simulations using the following parameters : 

Strike 100 

Spot 100 

Rebate 0 

Time to maturity 1 year 

Dividend yield 0% 

Volatility of regime 1 (σ1) 20% 

Volatility of regime 2 (σ2) 50% 

Risk-free rate 2% 

Barrier 80 

Intensity of positive jump in regime 1 2 

Intensity of negative jump in regime 1 1 

Intensity of positive jump in regime 2 3 

Intensity of negative jump in regime 2 5 

Intensity of switching regimes 1->2 (λ2) 5 

Intensity of switching regimes 2->1 (λ1) 4 

Initial regime Regime 1 

Frequency of spot level observations Daily 

Corrected barrier 80.9 

Default intensity in regime 1 0.01 

Default intensity in regime 1 0.03 

Size of positive jump in regime 1 5% 

Size of negative jump in regime 1 -4% 

Size of positive jump in regime 2 5% 

Size of negative jump in regime 2 -8% 

 

Like in the previous MC simulation (in the B&S framework), we will use a continuity 

correction in order to get a more accurate pricing. This time however, we can no longer use 

Broadie, Glasserman and Kou’s formula as we now have stochastic volatility instead of a 

constant volatility, yet the formula uses a single, constant level of volatility. 



17 
 

We will therefore use the following approximation : we will compute a weighted average 

volatility by using the two volatility levels and their respective transition intensities. We then 

have : σaverage= (λ2/((λ2+λ1))*σ2 + λ1/((λ2+λ1))*σ1) =  5*50%/9 + 4*20%/9 ≈ 37%. 

We are aware of the flaws of the above calculation. However the transition intensities, very 

close to each other, should help mitigate the error made by this approximation. Moreover, this 

continuity correction shifts the barrier by a small, almost negligible amount anyway. We now 

get a corrected barrier of : 80*exp(0.5826*37%*sqrt(1/365)) ≈ 80.9 instead of 80. 

Consistently, we obtain as explained in the previous Monte Carlo section, a higher barrier. 

Note that the size of jumps is defined relative to the spot price on the previous day. 

Note also that contrary to intuitive belief, defining one regime-switching intensity does not 

define the other one : one could think that switching n times say from 1 to 2 (and 1 being the 

initial regime) implies to switch either (n-1) or n times from 2 to 1. In fact, the intensity 

should be interpreted rather in terms of the « weight » of each regime, that influences the 

overall volatility. 

However, the above remark says nothing regarding the time spent respectively in each 

volatility regime : it could be in theory that the spot switches the same number of times 

between regimes, but however remains in one of the two regimes much longer than in the 

other one, which would considerably affect its behaviour : it would be almost as if there was 

only one regime (the one in which the spot stays longer). But by construction (remember the 

Poisson process used to count jumps), the transition times should be on average uniformly 

spread over the life of the option. 

In the above grid of parameters, we didn’t choose the jumps sizes totally arbitrarily. First, in 

order to be realistic we set the negative jump size in the high volatility regime higher (in 

absolute value) than that of the low volatility regime. Second, we chose these jumps sizes 

such that they correspond to jumps sizes « available » in the grid of the PDE method (see next 

section) : indeed, in the grid any jump falls exactly on a node, by assumption, so in order to 

compare the models we need to choose roughly the same jumps sizes. In other words, we first 

looked in the PDE method grid the size of the jumps (which is directly linked to the spot 

increment), then set it for the Monte-Carlo simulation. 

In order to improve our random numbers generation, we decomposed the [0;1] interval into 

ten equally-sized sub-intervals (i.e. from [0;0.1] to [0.9;1]) and ensured that inside each of the 

ten sub-intervals there are ten percent of the random numbers (which are needed to draw 

normal values), conform to stratified sampling. 

We kept using the daily-incremental formula for the evolution of the spot price presented in 

the previous MC section, except this time we used contingency conditions on the volatility 

and we added the prospective jumps. 

Regarding the jumps, of course we made sure that in the (rare) occurrence of a jump-to-

default, there is not in addition a negative jump (although this « double jump event » is highly 
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unlikely), so that the spot price is indeed bounded below by zero i.e. cannot become negative 

and also because this would not make sense as in a way the jump-to-default embeds the 

negative jump. 

 Price of the standard vanilla european put : 19.01 (standard error = 0.07) 

 Price of the D&I put : 18.55 (standard error = 0.07)  

 As a consistency check, we also priced the D&O put of same features and found 0.47 

(standard error = 0.01) 

The D&O put is virtually worthless in this context because the negative jumps and the jumps-

to-default together with a volatility of 50% in the high regime (and an average volatility that 

almost doubled compared to the MC simulation in the B&S context) almost ensure that the 

barrier will be breached during the life of the option. 

Equivalently, we notice the massive appreciation of the D&I put in this new context (it was 

worth roughly 5 in the previous, B&S section). Thus, in models that integrate stochastic 

volatility and jumps, the traditional rationale for buying barrier options (namely, their low 

cost) is often mitigated for « In » options as their price converges towards the corresponding 

standard option. Indeed, these new features make a « barrier event » much more likely.  

 

PDE method (explicit finite differences framework) 

In this section, we use the finite differences method, hereby discretizing the partial integro-

differential equation followed by the price of the D&I put.  

Below are the technical details : 

We start from the same framework as in the symmetrical context. The boundary conditions 

are : 0 for a spot equal to Smax , the value of the standard put of same features at Smin, (as Smin 

is below the barrier) and either 0 or the value of the standard put of same features at maturity, 

according to the spot level relative to the barrier.  

 

We now use two differents regimes of (brownian) volatility, each one corresponding to one 

grid. Jumps within and between regimes are described by Poisson processes which intensities 

(i.e., average number of occurrences over all the time periods) are arbitrarily chosen. These 

intensities are chosen with common sense though, e.g. negative jumps intensities are set 

higher than positive jumps intensities in order to reflect the alleged true distribution of the 

underlying price that has a fatter left tail and a thinner right tail relative to a lognormal 

distribution ; and obviously negative jumps intensities are much higher than jump-to-default 

intensities) . There can be positive, negative and default jumps inside each of the two regimes, 

plus transition jumps (i.e. from one regime to the other), which all contribute to the total 

volatility being higher than the brownian volatility. For sake of simplicity, we assume as 

stated previously that any jump size is a multiple of the spot increment Δlog(S), that is to say 
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that any jump falls exactly on a node on one of the two grids. Any jump that would fall 

outside of the grids is valued using the intrinsic value of the option given the spot price right 

after the jump occurred. 

In order to have a finer analysis, we extended the grid to 100 time periods and 200 spot levels. 

This helps to have more precision in the pricing as a common problem in tree-like approaches 

to barrier option pricing is that the barrier can fall between two nodes. 

We now have to include jumps in our PDE. This makes it a PIDE (partial integro-differential 

equation) : 

dV/dt – r*V + (r-Σλiyi)*V*dV/dS + (σ
*
)²/2*V²*d²V/dV² + (Σλi*ΔVi) = 0 

where ΔVi measures the change in option price subsequent to the jump n°i, and σ
*
 is the 

volatility of either of the regimes used.  

In our study we use three jumps : positive, negative and default. 

Accounting for the jumps we obtain this relationship : 

 

for all fi ;j strictly inside the grid (i.e. not on a boundary):  

 

fi;j = Ψ+* fi+Δt ;j+Δlog(S) + Ψ0* fi+Δt ;j + Ψ-* fi+Δt ;j-Δlog(S) + Σ(ΨΔk* fi+Δt ;j+Δk) 

 

where : 

 

Ψ+ = (Δt/(2Δlog(S)))*(r-σ²/2) + (Δt/(2Δ(log(S)²)))*σ² 

Ψ0 = 1 – r*Δt – σ²*Δt/Δ(log(S))² 

Ψ- = – (Δt/(2Δlog(S)))*(r-σ²/2) + (Δt/(2Δ(log(S)²)))*σ² 

ΨΔk = λk *Δt 

 

For matters of comparison, we use of course the same intensities and jump sizes as those 

shown in the previous section (see grid in « Monte-Carlo simulation within an assymetric 

environment »). 

In this context, we find a much higher price than under standard, B&S conditions : about 17.4. 

This is explained by the very volatile regime 2 together with a relatively high transition 

intensity from 1 to 2. 

The discrepancy in pricing comes from several biases, some of which were already mentioned 

in the PDE section of the first part. In this part, we add even more error due to the jumps 

feature of this new context : the PDE method imposes a rigid structure : the grid has fixed 

increments (although some methods exist to vary spot increments according to spot level) and 

therefore we are bound to work with approximations when it comes to the jump size : in other 
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words, we fixed the jumps sizes for the Monte-Carlo simulations which is fine for Monte-

Carlo, but in our grid, we cannot jump from exactly these percentages. Indeed, we assume that 

any jump falls exactly on a node of the grid, not between two nodes. Besides, the explicit 

scheme used is known to be less effective than the implicit scheme and especially than the 

Crank-nicholson scheme, which is basically a mix of the two. 

In order to check the convergence between MC and PDE methods, we thus chose jumps sizes 

that approximately match spot increments in the grid and used these values in our MC 

simulation.  

 

 

Image method  

Remember, we used the below relationship : 

PD&I = PK
* 
+ Pb - Pb

*      
on its active domain i.e. for S(t) in ]b ; +∞]  

 

Where :  Py is a standard put struck at y 

               Py
* 

is the symmetric of a standard put struck at y (in log space) 

 

In the new context of assymetry of the volatility smile, we will price again the D&I put by 

pricing each of its three components, with the finite differences method, and will check the 

size of the discrepancy. 

First, we price directly the D&I put with the same finite differences and MC methods and 

parameters as the one used previously, and find a price of ≈ 17.4 with PDE and ≈ 18.55 with 

MC (this was done in the previous section). 

Then, we price separately Buchen’s three constituents of the D&I put. We use the payoffs at 

maturity for the simulations, and the parameters used in the two previous sections. The 

payoffs at maturity are : max(0 ;K-b²/S) + max(0 ;b-S) – max(0 ;b-b²/S), using both the 

formula framed in blue above, and the definition of the symmetric of an option in the image 

method (equation page 12). In this MC simulation, we therefore use the closed-form formulae 

given by Buchen. In order to adapt them to our stochastic volatility and jumps context, we 

simulated the whole path. In other words, the formula above is evaluated 100,000 times at the 

end of 365 observations during which volatility can change regime, and jumps can occur.  

Pricing separately the three components of the D&I put with 100,000 MC simulations yields a 

price of  ≈ 22.55.   
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We find therefore a material discrepancy here in this particular context, as Buchen’s formula 

leads to overestimate the D&I structure. This tends to restrict Buchen’s analysis validity to a 

symmetric environment. 

In order to test again Buchen’s argument validity, we generate a smile that is less assymetric, 

namely with smaller and less frequent jumps and relatively low volatilities.  

Strike 100 

Spot 100 

Rebate 0 

Time to maturity 1 year 

Dividend yield 0% 

Volatility of regime 1 (σ1) 20% 

Volatility of regime 2 (σ2) 40% 

Risk-free rate 2% 

Barrier 80 

Intensity of positive jump in regime 1 1 

Intensity of negative jump in regime 1 2 

Intensity of positive jump in regime 2 3 

Intensity of negative jump in regime 2 4 

Intensity of switching regimes 1->2 (λ2) 5 

Intensity of switching regimes 2->1 (λ1) 2 

Initial regime Regime 1 

Frequency of spot level observations Daily 

Corrected barrier 80.9 

Default intensity in regime 1 0.01 

Default intensity in regime 1 0.02 

Size of positive jump in regime 1 3% 

Size of negative jump in regime 1 -4% 

Size of positive jump in regime 2 3% 

Size of negative jump in regime 2 -8% 

 

We now find that the price of the D&I put priced directly is ≈ 17.88 (standard error 0.08) ; as 

expected the price is still high compared to a B&S framework due to the negative jumps and 

stochastic volatility, but lower than in the previous simulation.  The price of the D&I obtained 

from its components (image method) is ≈ 20.22. Thus once again, the image method 

overestimates the D&I put, with the parameters used. Note that the sensitivity of the option 

price to a reduction in the volatilities and jumps used in the simulations looks fairly low.  

Let’s test a scenario even closer to B&S. In particular, we use the following parameters : 

Strike 100 

Spot 100 

Rebate 0 

Time to maturity 1 year 

Dividend yield 0% 

Volatility of regime 1 (σ1) 20% 



22 
 

Volatility of regime 2 (σ2) 30% 

Risk-free rate 2% 

Barrier 80 

Intensity of positive jump in regime 1 1 

Intensity of negative jump in regime 1 1 

Intensity of positive jump in regime 2 2 

Intensity of negative jump in regime 2 2 

Intensity of switching regimes 1->2 (λ2) 2 

Intensity of switching regimes 2->1 (λ1) 2 

Initial regime Regime 1 

Frequency of spot level observations Daily 

Corrected barrier 80.9 

Default intensity in regime 1 0.001 

Default intensity in regime 1 0.01 

Size of positive jump in regime 1 3% 

Size of negative jump in regime 1 -3% 

Size of positive jump in regime 2 3% 

Size of negative jump in regime 2 -6% 

 

We now find that the price of the D&I put priced directly is about 8.5 (standard error 0.06) 

while the price of the D&I obtained from its components (image method) is about 18.9. This 

time, while the direct pricing leads to a price that dramatically decreased, the pricing using the 

three constituents has decreased only a little.  

 

Again, the image method doesn’t hold in the case studied, which is rather close to a 

symmetric volatility smile, though. 
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IV Conclusions 

It seems that the image method to price barrier options is valid only in the specific case where 

the volatility smile is symmetrical.  

Indeed, while the D&I put price perfectly matches the exact price (the one found with the 

closed-form formula) within a symmetrical framework, there seems to have a sizeable 

discrepancy when it comes to an asymmetrical volatility smile : when we add jumps and 

stochastic volatility to the standard framework, the prices start to differ by material amounts, 

probably too much for a bank looking for accurate pricing. 

In particular, it seems that the image method repeatedly gives a relatively high price with little 

sensitivity to the level of the jumps and volatilities used ; in other words when using a very 

asymmetrical smile (large and frequent jumps) the pricing ought to be relatively accurate, 

however when simulating a smile close to being symmetrical, the discrepancy is largest. 
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