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ABSTRACT OF THE MASTER THESIS

by

Torben Rabe
Master of Science in Management (Grande École)

HEC Paris, 2016
Professor Oliver Gottschalg, PhD

Are Private Equity Funds of Funds managed by more
risk-tolerant Private Equity Firms necessarily more risky?

The aim of this thesis is to analyze the risk-return characteristics of portfolios of Private
Equity Funds, so-called Funds of Funds (FoFs). I used a large data set of 5,539 Euro-
pean, U.S. and Asian funds with historic performance information from Preqin covering
vintage years from 1977 to 2011. The dataset includes 1,312 buyout funds and 774 ven-
ture capital funds.

This thesis shows that the risk and return characteristics of FoFs are significantly influ-
enced by portfolio construction parameters related to the number of fund investments,
the length of the investment period, the investment rhythm, the vintage year, the size
focus, the geography and the selection ability of the investor.

To this aim, I present a framework to analyze the risk profile of FoFs using fund per-
formance data. Through Monte Carlo simulations, I am able to test how the portfolio
construction and fund selection decisions at the Fund of Funds (FoF) level affect the
risk- return properties of the portfolio.

This framework allows me to derive a probability distribution of historically possible
FoF performances, and conclude on the risk profile of a FoF. The risk associated to a
FoF investment is significantly smaller than the one for a fund investment. The risk-
mitigating effect of diversification depends, however, on the portfolio’s investment period
length, investment rhythm, size focus, geography, selection ability and fund type. I find
that the weight allocation technique has only a negligible effect on the risk of FoFs.
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1 Introduction

”The word ’risk’ derives from the early Italian risicare, which means ’to dare’. In

this sense, risk is a choice rather than a fate. The actions we dare to take, which

depend on how free we are to make choices, are what the story of risk is all about.

And that story helps define what it means to be a human being.”

Peter L. Bernstein, Against the Gods: The Remarkable Story of Risk

Private Equity (PE) provides equity capital to private companies. Due to its attractive

risk-return characteristics and especially its supposedly1 low correlation with other as-

set classes, Private Equity has become more and more popular among institutional and

sophisticated investors. David Swensen, the longtime investment chief at the Yale Uni-

versity Endowment Fund, has pioneered a model that favors a longer investment horizon

and committing capital to illiquid investments such as Private Equity. This approach

has yielded superior returns in the past (Swensen (2009)). Other sophisticated investors

have followed suit. However, Private Equity is still widely perceived as a risky asset

class, and many investors struggle with the strategic capital allocation to this asset class

(Gottschalg et al. (2015)).

The emergence of Private Equity FoFs coincides with this development. A FoF allocates

capital from investors in multiple underlying funds on their behalf. FoF investors are

typically pension funds, banks, insurance companies, corporate investors, and other FoFs

(Weidig et al. (2005)). Private equity FoFs are now contributing more than 10% of the

total capital in private equity, i.e. venture capital and buyout funds (Preqin (2014)).

However, their risk profile is not well understood due to their intransparent and illiquid

nature, as well as the limited access to performance figures.

The majority (59%) of investors interviewed by Preqin stated that the main reason

they used FoF investments was to diversify their portfolios. This seems intuitive at

first glance: Investors commit to private equity FoF to gain access to a wide range of

underlying fund types, investment strategies, underlying assets, fund managers, vintage

years2, industries, geographies and currencies. (Preqin (2014)). A FoF should have

reduced risk in comparison to a single fund investment due to the non-perfect correlation

between funds and a second level diversification effect, as FoFs consist of funds which

themselves consist of investments. A greater diversification level has two important

implications. First, a wider range of fund managers and their applied strategy is included

1Phalippou and Zollo (2005) show that, in reality, the performance of private equity funds is pro-
cyclical as it positively co-varies with both the business cycles and public stock-markets.

2Vintage year is the year of fund formation and first drawdown of capital.
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in the portfolio, which usually has a positive effect. More importantly, a greater degree

of diversification at the fund level implies a greater degree of diversification in terms

of portfolio companies. A portfolio of 10 private equity funds containing 80 to 150

underlying portfolio companies has different risk characteristics than a portfolio of, say,

100 funds with 800 to 1,500 companies, which have been acquired at different stages of

the business cycle. Thus, FoF investors should have clear diversification benefits. FoFs

need to understand their own risk profile, if they are to convince potential investors of

their lower risk.

The aim of this thesis is to clarify the diversification benefits and how portfolio construc-

tion decisions such as the number of underlying funds, the geographic focus, selection

ability, fund size focus, investment period and investment rhythm affect the risk-return

characteristics of portfolios.

Therefore, I simulated historical FoFs and performed a thorough analysis of their risk-

return characteristics under different scenarios. Historical FoFs are constructed by creat-

ing portfolios of historical Funds that are randomly selected from the Preqin dataset given

some varying constraints described in 4.1 and while respecting the time line. Through

Monte Carlo simulation techniques, I am able to analyze how different portfolio design

decisions impact the risk-return characteristics of the portfolio.

The remainder of this paper is structured as follows. After this introductory section,

I discuss the importance of diversification in the context of Private Equity as an asset

class. After that, I will present the data used for this research along with its limitations

and possible biases. I then describe the used framework & model before I go over to the

results for each hypothesis. Finally, I will conclude the paper with a short summary of

the main findings.
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2 Diversification

”You’re missing the big picture”, he told her. ”A good album should be more than

the sum of its parts.”

Ian Rankin, Exit Music

2.1 Private Equity and Modern Portfolio Theory

According to Modern Portfolio Theory (MPT), the more diversified a portfolio and the

more uncorrelated its components, the less idiosyncratic risk3 contributes to the risk of

the overall portfolio. The notion of diversification is best summarized by Benoit Mandel-

brot, who recommended ”broad, very broad diversification with small equal allocations”

Taleb (2012). Diversification is a fundamental part of the investment approach of almost

all institutional and sophisticated investors. Including diversification in the investment

approach is supported by a wide range of academic research since its establishment by

Markowitz (1952).

However, one needs to be careful to apply MPT to Private Equity because of the unique

nature of Private Equity as an asset class and challenges related to data availability and

other modeling assumptions. MPT assumes that investors pay no taxes or transaction

fees and can optimize their portfolios through a mean-variance optimization. Models

based on MPT may be adequate for the universe of publicly traded instruments but rely

on parameters that are instable, unreliable or even unavailable in Private Equity. Most

investors assume that Private Equity investments have a low correlation with the public

market, which makes the asset class look attractive in the eyes of portfolio managers.

Nevertheless, MPT does not offer the right tools to analyze Private Equity returns and

to construct Private Equity portfolios for the following reasons (see Meyer (2014)):

• The market for Private Equity is not efficient: valuations are usually unreliable

and infrequent and the investments are illiquid because of long holding periods

and few buyers and sellers. Investors usually only get access to the company’s

financial data once they invest in the private company. This makes it difficult, if

not impossible, to measure risk as the volatility of a time series. The interpretation

of correlation as a measure of dependence can be misleading.

3Idiosyncratic risk is the risk that is specific to an asset or a small group of assets.

3



• Due to the illiquidity of Private Equity investments and the long investment period

of between 10 to 12 years, the assumption of MPT that all investors have the same

time horizon is not true.

• As shown in section 3.1.1, private Equity fund returns are highly non-normal, which

goes against the MPT assumption of normally distributed returns.

If we go one step above to the FoF level, the properties look a little different. Mathonet

and Weidig (2004) show that for a diversified portfolio of funds the return multiple

distribution of FoFs is nearly normally distributed with flattening tails, id est (i.e.) the

return multiple distribution function of FoFs approaches the normal distribution function

as we add more and more funds to the portfolio and increase the diversification level.

Thus, while investors should not use MPT on the fund level, the notions of this theory

may be applicable to the FoF level. Consequently, I will MPT-related concepts such

as standard deviation or the risk-return ratio, which is similar to the sharpe ratio, but

will also focus on the PERACS Risk CurveTM and PERACS Risk CoefficientTM as the

measure of risk.

2.2 The Impact of Diversification on the Portfolio

The overall goal of portfolio construction is to select and combine assets with funda-

mentally different attributes to optimize the risk-return characteristics of the portfolio

and to ultimately meet the manager’s objectives. Diversification is a technique used to

protect the portfolio against the impact of adverse events and unfavorable outcomes.

However, with an increasing number of assets the portfolio’s return reverses to the aver-

age market performance. As Warren Buffett states, wide diversification is only required

when investors do not understand what they are doing. Investors may use the principle

of concentration to achieve growth instead (Meyer (2014)).

Thus, before discussing whether an ’optimal’ level of diversification exists, the benefits

and limits of diversification techniques need to elaborated on.

2.2.1 The Benefits of Diversification

Diversification, at least to a certain degree, has an undeniably positive effect on the

risk-return characteristics of a portfolio. There are very few investors that would invest

only in one asset on the Fund or FoF level, given that investors have sufficient capital.

The benefits are (Meyer (2014)):

4



• Diversification reduces the contribution of idiosyncratic risk to the risk of the over-

all portfolio. Private Equity funds have on average in 20-25 investments in their

portfolio. Private Equity FoFs in turn also have on average 20-30 funds in their

portfolio. Thus, investors gain exposure to hundreds of Private Equity investments

by investing in Private Equity FoFs. The FoFs managers improve the portfolio’s

risk-return properties by including more funds in their portfolio and gaining expo-

sure to different industries, geographies, fund types or vintage years.

• Diversification may make the fund raising process for FoF managers easier. With

an increasing diversification level there is an increasing stability and predictability

of portfolio behavior and notably more reliable cash flows. Thus, it may be easier

to find investors.

• For the same reasons diversification may enable higher leveraging to manage a

portfolio’s risk profile.

These benefits are mutually exclusive, but not necessarily collectively exhaustive.

2.2.2 The Limits to Diversification

The level of diversification might have an upper limit, however, when one considers the

impact of diversification under risk-return aspects. Not only will diversification increase

the investor’s protection against the downside, but it also has a detrimental impact on

the portfolio‘s upside.

• If one accepts the idea that only the best funds provide a competitive return, diver-

sification will eventually prove counterproductive and lead to a mean reversion of

the portfolio’s return. At some point there will be a lack of high quality investment

opportunities and the overall performance of the portfolio will be reduced if less

attractive investments are included to increase the level of diversification, if the

investor has an asset selection ability higher than the average selection ability.4

• Overdiversification is costly and leads to high transaction costs, due diligence and

monitoring costs and administrative costs that reduce the overall portfolio’s return.

4If the investor has a lower selection ability, diversification might prove to be a more powerful tool.
This will be further investigated in the results section.
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2.3 The ”Optimal” Level of Diversification

Considering the benefits and limits to diversification, the question emerges which level of

diversification is ’optimal’ for FoFs. Answering this question is not trivial and has been

subject to academic research (see especially Gottschalg et al. (2015), but also Ljungqvist

and Richardson (2003), Korteweg and Sorensen (2010),Cornelius (2011) or Hochberg

et al. (2007). Mathonet and Weidig (2004) found that the maximum diversification ben-

efit is achieved with just twenty to thirty underlying funds. Gottschalg et al. (2015)

shows that the benefits of diversification also depend on the size focus and the selection

ability of the FoF. The question of how much to diversify on the Fund of Fund level

depends, among other things, on the investor’s risk appetite, selection skills and the

returns targeted for the overall portfolio. FoF managers who are convinced of their se-

lection abilities to identify attractive investment opportunities may find it more effective

to use concentrated portfolios that include only the most attractive investment opportu-

nities according to their assessment. Thus, the optimal level of diversification ultimately

depends on the risk appetite of investors.

The question will be revisited in section 5.

2.4 How to achieve Diversification

There are three ways to construct a diversified portfolio (Meyer (2014)):

1. The top-down approach is based on a construction of the overall portfolio, de-

termining allocation ranges first and then searching for investments that fit these

allocations. Using this approach, portfolio managers prioritize the choice of sec-

tors, countries, trends and vintage years as opposed to the selection of individual

assets. The major drawback of this approach is that in reality it is not always

possible to stick to the allocations the strategy proposes.

2. Using the bottom-up approach, portfolio managers take the opposite direction and

focus on screening all investment opportunities based on their individual attrac-

tiveness and risk-return characteristics. Portfolio considerations such as geographic

diversification are assumed to only have a subordinate role.

3. The naive approach includes a portfolio construction technique where the portfolio

components have an equal portfolio weights. Portfolios that are constructed in such

a way are found to be not significantly inferior to the other approaches. However,

investing the same amount of capital in every fund in the portfolio introduces a

6



bias as it is implicitly a bet that smaller funds will perform better than the larger

ones.

3 Data

3.1 Data sample and Descriptive Statistics

On the fund level, the Preqin dataset comprises 5,539 funds with historic performance

information from Europe, United States of America (USA) and Asia provided by Pre-

qin covering vintage years from 1977 to 2011. Funds after 2011 are not included in the

dataset because younger funds may not be fully liquidated yet and their performance

multiple given by Preqin may still be subject to valuation principles applied to unrealized

investments. The data set includes 1,312 buyout funds and 774 venture capital funds.

The other types of funds are summarized in the appendix.

Table 1 gives an overview of the descriptive statistics of the overall dataset including

different fund types. For most of my thesis, i used buyout funds.

Table 1: Overview of overall dataset by selection ability

Selection Ability Number of Funds Mean TVPI Median TVPI Minimum TVPI Skewness Kurtosis

1 Lower median 2606 1.14 1.19 0.00 0.36 6.37

2 Upper median 2933 2.19 1.78 0.68 10.42 167.25

Table 2: Overview of overall dataset by region focus

Region Focus Number of Funds Mean TVPI Median TVPI Minimum TVPI Skewness Kurtosis
1 Asia 407 1.62 1.40 0.30 4.79 34.72
2 Europe 1236 1.56 1.42 0.00 4.66 48.99
3 US 3896 1.75 1.51 0.00 11.55 212.42

Table 3: Overview of overall dataset by fund size category

Fund Size Category Number of Funds Mean TVPI Median TVPI Minimum TVPI Skewness Kurtosis
1 Large 992 1.47 1.43 0.12 1.68 11.03
2 Medium 3123 1.65 1.46 0.00 13.21 287.42
3 Small 1424 1.94 1.56 0.01 8.36 120.64
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3.1.1 Statistical Tests on Funds for Simulation

Test of normality. The Kolmogorov-Smirnov test checks for the normality of the

fund performances.5 With a probability of 0.00%, the performances of buyout funds are

normally distributed.6 Therefore standard concepts of financial theory, which assume

normally distributed returns, are not applicable for the modeling of Private Equity port-

folios on the fund level. This includes standard deviation, correlation and any other

ratios that use these measures, exempli gratia (e.g.) Sharpe ratio or the Sortino ra-

tio. As the fund performance is not normally distributed, non-parametric tests like the

Mann-Whitney test and the Kruskal-Wallis test have to be used (Meyer (2014)).

However, we will assume that the returns of portfolios on the Fund of Fund level are nor-

mally distributed. The Kolmogorov-Smirnov test statistic indicates that the distribution

of portfolios with a higher diversification level is close to a normal distribution. As shown

later, this assumption is also supported by the change in skewness and kurtosis towards

a normal distribution when comparing Fund level and Fund of Fund level returns.

Using the Mann-Whitney test statistic, significant differences between Venture Capital

(VC) and buyout funds are found as a whole. Therefore the simulation and analysis

of FoFs is done solely for buyout funds first. I will look at the risk-mitigating effect of

diversification for VC and other fund types in section 5.8.

3.2 Limitations of the dataset

Although I am working with a relatively large data set of 5,539 funds, I am looking at

smaller subsets to isolate and investigate certain effects. For that reason, some years or

regions may be over- or underrepresented, as explained in 3.3.

Furthermore, I am assuming that the TVPI and other variables of the funds in the

dataset are independent and identically distributed random variables. The independence

of variables is one of the central tenets of conventional asset allocation frameworks built

around the concept of ”normality” of asset returns.

5The normal distribution is a statistical distribution commonly used to model asset class returns in
traditional Mean-Variance Optimization frameworks.

6The Kolmogorov-Smirnov test is used to decide if a sample comes from a population with a specific
distribution.
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3.3 Possible Biases

Before discussing the framework and results of my analysis, I have to describe potential

biases in the dataset. The Preqin dataset is a combination of self-reported informa-

tion provided by fund managers and US performance data published by public pension

schemes. Because of the nature of this dataset, a number of potential biases could arise.

First, a potential survivorship bias could occur if the funds stop reporting data once their

fund returns decrease or are expected to perform poorly, as Gottschalg et al. (2015) point

out. Gottschalg et al. (2015) also argue that portfolio managers follow their own specific

objectives in the design of their private equity portfolios. Thus, fund selection decisions

and skills of the portfolio managers could influence the data. For both of these reasons,

the fund returns in the dataset are likely to be too high as compared to the actual average

returns of all private equity funds.

Furthermore, the data might be impacted by a selection bias due to the self-reported

nature of the data. The Preqin data was provided by fund managers. It could be the case

that only high-performing funds report their performance. Weidig et al. (2005) argue

that reporting funds should have no incentive to bias their performance data if the data

set is based on voluntary reporting. Kaplan and Schoar (2003) suggest that a selection

bias does not occur in the Venture Economics data set that they used.

The number of funds per vintage year in the Preqin data set varies. For instance, there

are only 8 funds in 1982, but 522 funds in 2007 in the data set. This has implications for

the Monte Carlo simulation because a low number of funds for a vintage year may lead

to two different sources of error. Firstly, statistical errors and lower significance may

occur. Secondly, there might be a systematic bias due to a lower coverage in a vintage

year. If one vintage year is underrepresented, subsequent vintage years might also be

underrepresented in the simulation. Since the maximum distance of vintage years of the

funds in the simulated portfolios is constrained by the investment period, some periods,

such as the 1980’s may be underrepresented. The same holds for different regions: In

contrast to European (maximum number of funds: 119 in 2007) and Asian (maximum

number of funds: 52 in 2008) funds, US funds show a relatively high coverage (maximum

number of funds: 313 in 2007).

The majority of the funds in the dataset have the USA as their region focus (3379 US

funds and 734 US buyout funds). The simulated portfolios are designed in such a way

that all funds in the portfolio have the same region focus. Thus, simulated portfolios

predominantly consist of US funds.
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Finally, younger funds (i.e. funds with vintage years after 2011) might not be fully

liquidated yet. If some funds in the dataset are not fully realized, the valuation principles

by which their return is measured differ. To mitigate this effect, I excluded private equity

funds raised with vintage years after 2011. It is worth noting that, while these biases

may influence the average returns and overall dispersion of the data, the relationship

between different variables (especially portfolio design decision variables) might not be

affected.

4 Framework & Model

I simulated historical FoFs because performance data on historical FoFs is rare and

standard portfolio theory cannot be applied to model FoFs risk (Weidig et al. (2005)).

For that reason, a Monte Carlo simulation technique is used to compute the performance

and risk of FoFs with varying characteristics. Ideally, all possible combinations of funds

would be simulated. This, however, is not feasible due to the high number of possible

combinations. Nevertheless, the more portfolios are constructed randomly, the closer the

sample resembles the population of all possible portfolios. Given the large number of

simulated portfolios, the simulation in this thesis delivers a good level of approximation.

4.1 Monte Carlo Simulation

To construct a historical fund, a hypothetical FoF is simulated in a random year, and

funds are assigned given specific constraints. A first fund is randomly drawn and all

other funds in the portfolio follow constraints that depend on the characteristics of the

first fund drawn and the hypothesis tested. Firstly, only funds the FoF could have

invested in during the chosen investment period can be included. For instance, if the

first fund drawn is from 1995 (i.e. its vintage year is 1995) and the investment period

is 5 years, then only funds with vintage year from 1995 to 1999 can be included in the

portfolio. Secondly, only funds with the same region focus can be included. Thus I

implicitly assume that FoFs only invest in one region. For example, if the first fund

has a region focus on Europe, then the subsequent funds are also focused on Europe.

Thirdly, only funds with the same fund size category can be included. Doing that, I

implicitly assume that FoFs only invest in funds with a similar fund size category. The

fund size categories are small (≤ 100mn USD), medium (≤ 800mn USD) and large (>

1,500mn USD). According to Gottschalg et al. (2015), the small, medium and large size

categories reflect the commonly agreed definition of fund sizes. Additionally, small and
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medium funds are summarized as ’smid’ funds (0-800mn USD) to compare against the

large fund category.

To analyze the risk-mitigating effect of increasing the diversification level, I randomly

create 1,000 random portfolios of Funds which consist of 1, 5, 10, 15, 20, 25, 30, 50 or

100 underlying Fund(s). For hypotheses 1, the overall dataset including different fund

types is used. For hypothesis 8, four different fund types are compared (buyout, vc, early

stage, real estate). For the other hypotheses, only buyout funds are used to simulate

portfolios in order to isolate the risk-mitigating effect of changing certain parameters.

Each Fund can be drawn several times between different portfolios, but never in the

same portfolio. The performance of FoF portfolios is the average performance of the

underlying funds. The return dispersion of the simulated portfolios is calculated using

two different approaches. First, the difference between the maximum and minimum

portfolio returns is calculated and analyzed in form of boxplot graphics.7 Second, I will

apply the approach used in Gottschalg et al. (2015), more precisely the PERACS Risk

CurveTM and CoefficientTM explained in 4.3.2.

Related to section 2.4, this thesis mimics both the top-down and naive approach to

simulate portfolios according to pre-defined allocations. For the Monte Carlo simulation,

I used both equal portfolio weights as well as random weights and pro rata weights.8

There are several ways to achieve diversification. FoF managers increase the number

of funds, alternate the geographic focus or size focus of the funds they are invested in,

or include different vintage years in the portfolio. The model used in this thesis tests

how the risk-mitigating effect of increasing the number of funds in the portfolio changes

under different circumstances.

7The whiskers of the boxplot graphics in section 5 represent the minimum and maximum, not quan-
tiles.

8Pro rata weights are calculated using the individual Fund size relative to the size of the overall
portfolio.
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4.2 Hypotheses

When running the Monte Carlo Simulation, several hypotheses were tested. The results

of these tests are shown in section 5. The simulation of portfolios of funds was designed

differently for each hypothesis. I did find evidence for most, but not all, hypotheses.

1. Hypothesis 1: The risk of Funds and Funds of Funds is reduced as the number of

investments and funds, respectively, is increased.

(a) The diversification effect can already be seen when comparing the median &

average risk-return profile of Private Equity Funds and Funds of Funds.

(b) At the same time, the marginal diversification benefit of increasingly large

portfolios decreases rapidly (as can be measured by the number of investments

or Funds in the portfolio). There exists a number of Funds beyond which the

marginal cost exceeds the marginal benefit of diversification.

2. Hypothesis 2: There exists a risk-mitigating effect by increasing the investment

period and thus diversifying the vintage years in the portfolio. However, the diver-

sification effect is smaller than the diversification effect from increasing the number

of funds in the portfolio, as also shown by Mathonet and Weidig (2004).

3. Hypothesis 3: The diversification effect of increasing the number of underlying

funds is influenced by the investment rhythm.

4. Hypothesis 4: Portfolios of small-cap funds enjoy a disproportionate risk-mitigating

effect when the diversification level is increased (Gottschalg et al. (2015)).

5. Hypothesis 5: Increasing the number of funds has a different risk-mitigating effect

when the portfolio weights within the Fund of Fund are allocated equally, randomly,

or pro rata.

6. Hypothesis 6: There exists a difference in the optimal number of funds in a Private

Equity portfolio depending on the regional focus of the fund.

7. Hypothesis 7: Investors with a low selection ability enjoy a higher risk-mitigating

effect from increasing the number of funds in the portfolio than investors with a

high selection ability.

8. Hypothesis 8: Increasing the number of funds has a different risk-mitigating effect

for different fund types.
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4.3 Measures

4.3.1 Performance Measures

The TVPI is a measure of gross returns to invested to capital. It is a cumulative

realisation ratio and is also called multiple. According to the International Limited

Partner Association (ILPA), the TVPI is the ratio of the current value of remaining

investments within a fund, plus the total value of all distributions to date, relative to

the total amount of capital paid into the fund to date.

TV PI = DPI +RV PI

DPI =
Distributionscumulative

CapitalPaidIncumulative

RV PI =
ResidualV alue

CapitalPaidIncumulative

The TVPI is commonly used in the context of Private Equity investments and funds

according to the ILPA. The used Net TVPI is net of fees, expenses and carry.9

There are several reason why this thesis does not focus on the IRR as the primary per-

formance measure. As Gottschalg points out, the IRR method puts too much emphasis

to the returns generated early in the life of a PE fund. Morevover, IRR tries to express

the annual performance of a PE fund for the time from the inception of this fund to its

last cash flow, while the money is in fact invested gradually (and returned gradually) in

Private Equity. Hence the IRR formula makes implicit assumptions about the returns

generated while the money is not yet (or no longer) invested by the PE fund and these

assumptions distort the performance assessment. Furthermore, the calculation of the

pooled IRR10 would significantly complicate the analysis of the simulated model. In the

TVPI multiple calculation, the reinvestment rate is assumed to be zero. In the IRR

calculation, it is assumed that capital can be reinvested at the same rate. Harris, Jenk-

inson, and Kaplan (2011) report weighted average TVPIs of 1.76-2.30 for buyout funds

and 2.19-2.46 for VC funds.

9Carry = carried interest, i.e. percentage of profits that general partners receive out of the profits
of the investments made by the fund.

10The pooled IRR is the IRR of the overall portfolio.
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4.3.2 PERACS Risk CurveTM and PERACS Risk CoefficientTM

Because of the illiquid nature of Private Equity investments, it is difficult to determine the

volatility of underlying portfolio companies or funds, and even more difficult to calculate

the volatility of the overall Fund or FoF. Other analyses of Private Equity related to

the Capital Asset Pricing Model (CAPM) model tend to be complex to conduct and

difficult to interpret (Driessen et al. (2012)). Instead, the PERACS Risk CurveTM

and PERACS Risk CoefficientTM developed by Oliver Gottschalg and Peracs are

part of a profit-distributions method that measures the risk within a private equity

portfolio. The risk profile for a Private Equity Fund or FoF is created through plotting

the cumulative profits. First, the contribution of each individual investment to the total

profit of the portfolio is calculated. The contribution can be either calculated in terms

of simple dollars or any other currency or in terms of net present value (NPV)) of each

investment in a private portfolio. Then, the investments are ranked according to their

contribution.

Based on this, we can plot a graphical representation of the cumulative function of the

empirical distribution of profits. The resulting PERACS Risk CurveTM is a performance-

distribution curve constructed by plotting the percentage of a fund’s investments, ordered

by their profit contribution, on the x-axis and the percentage of profit contribution

from the corresponding fund on the y-axis. Every point on the Curve corresponds to

a performance statistic. Consequently, one can for example see that the worst x% of

the portfolio contribute to y% of the portfolio’s profit. The PERACS Risk CurveTM is

equivalent to the Lorenz Curve11 used in economics.

11Max Lorenz developed the lorenz curve in 1905, which represents the inequality of wealth distribu-
tions.
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The PERACS Risk CurveTM is defined as:

Fi = i/n

Si =
i∑

j=1

Yj

Li = Si/Sn

where:

• n refers to the number of investments.

• yi is a sequence of i = 1 to n For n investments, with a sequence of yi, i = 1 to n

that is indexed in increasing order (yi ≤ yi+1).

• The PERACS Risk CurveTM is the resulting continuous linear function from con-

necting (Fi, Li).

The PERACS Risk CurveTM is equal to the ’line of perfect equality’ (i.e. the curve

would be a 45◦straight line) if every investment generates the same absolute profit. The

’case of perfect inequality’ describes the case when a single investment generates all the

portfolio profits (Gottschalg et al. (2015)).

Using this approach, investors can easily assess a portfolio’s risk characteristics and

compare them with the portfolio’s return. Overall, the more curved the graph is, the

more profits are concentrated in a low number of investments. As Gottschalg et al.

(2015) points out, Private equity investors may differ in their preferences for different

shapes of the PERACS Risk CurveTM.

Another concept created by Gottschalg and Peracs is the PERACS Risk CoefficientTM.

It refers to the area between the ’line of perfect equality’ and the PERACS Risk CurveTM.

The higher the coefficient, the more unequal the profit distribution (i.e. 0 = perfectly

distributed profit, 1 = perfectly concentrated profit). The Coefficient is equivalent to

the Gini Coefficient12. The PERACS Risk CoefficientTM is calculated through a method

similar to a method developed and used by Chen et al. (1982), who calculate the Gini

coefficient for economies with individuals of negative net wealth. The PERACS Risk

CurveTM, as well as the PERACS Risk CoefficientTM, are designed to be independent

of the absolute amount of profits generated by the portfolio (Gottschalg et al. (2015)).

Gottschalg argues that this makes it possible to compare risk profiles of different Private

Equity portfolios, independent of their absolute returns.

12The Gini Coefficient was developed by Corrado Gini in 1912.
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Figure 1: An exemplary portfolio containing loss-making deals

Source: Peracs and Chen et al. (1982)

The PERACS Risk CoefficientTM can be intuitively understood using the areas in fig-

ure 1:

PERACS Risk CoefficientTM =
A+B

A+B + C

As Chen et al. (1982) point out, the area (A + B) can be considered as the area of

concentration whereas area C is an area of equalization. In a portfolio without loss-

making deals, B+C = 0.5 and PERACSRiskCoefficientTM = B/2, which is identical

with the simple Gini coefficient.
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4.3.3 Skewness and Kurtosis

Skewness is a parameter that measures the asymmetry in a random variable’s proba-

bility distribution. The probability density functions of exemplary beta distributions in

figure 2 differ only in their skewness. The mean and the standard deviation are iden-

tical. The graph on the left is positively skewed. The graph on the right is negatively

skewed. The skewness for symmetric distributions, such as the normal distribution or in

the middle figure, is zero (Meyer (2014)). Investors generally prefer a positive value for

the skewness of returns so that the right tail is longer and more positive extreme returns

can be achieved.

 

 

(a) Positive skewness

 

 

(b) Zero skewness

 

 

(c) Negative skewness

Figure 2: Illustration of Skewness using a Beta Distribution

The skewness of a distribution is calculated as:

skewness =

n∑
i=1

(xi−x̄)3

n

σ3

Kurtosis is a measure of whether the data is more peaked or flat compared to a normal

distribution. A higher kurtosis indicates that more of the variance is due to infrequent

extreme deviations. Normal distributions have a kurtosis of three. Distributions with

a kurtosis value greater than three (so-called leptokurtosis) are characterized by a high

peak and fat tails. Distributions with a kurtosis lower than three (so-called platykur-

tosis) are characterized by a less peaked distribution and thinner tails. High kurtosis

is associated with having ’fat tails’, i.e. the payoff of winners and the losses associated

with losers tend to be more extreme. Thus, investors who are convinced of their selection

ability may prefer a high kurtosis (Meyer (2014)). A risk-averse investor, on the other

hand, prefers a distribution with low kurtosis so that returns tend to be not far away

from the mean.
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The kurtosis of a distribution is calculated as:

kurtosis =

n∑
i=1

(xi−x̄)4

n

σ4

4.4 Other Measures

Shortfall risk is the probability that the portfolio of funds will not achieve a set target

multiple:

P (TV PIP ) ≤ TV PIP,T

where TV PIP is the net return multiple of the portfolio P and TV PIP,T is the target

multiple for the portfolio.

Mathonet and Weidig (2004) introduced an expected utility function in their analysis

of mean variance-skewness-kurtosis-efficient portfolios. Similary, this thesis analyzes the

realized utility of simulated portfolios. The realized utility is a probability density

function (pdf), which has four moments: mean, variance, skewness and kurtosis. If the

four moments are not realized but expected values, the investor’s utility can be expressed

with a Taylor series.

In this thesis only realized values are analyzed with the following function:

Up = A ∗ TV PIp −
1

2
∗B ∗ variancep +

1

3!
∗ C ∗ skewnessp −

1

4!
∗D ∗ kurtosisp

where:

• Up is the utility of a portfolio investor.

• TV PIp is the average return multiple of the portfolio, which is desirable. The

return coefficient A hence has a positive sign and is set to 4 in this thesis.

• B is the risk aversion coefficient of the average investor assumed in this thesis. The

risk aversion coefficient is set to 4 in this thesis. The variance of the TV PIp is

undesirable, hence the negative sign.

• Positive skewness is desirable, negative skewness is undesirable, hence the positive

sign. The skewness coefficient C is set to 2 in this thesis.

• Excess kurtosis above 3 indicates a more peaked distribution, with fatter tails

than normal. Generally, kurtosis is undesirable, which would imply a negative
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sign. However, in the context of diversifying Private Equity risk, the question

whether kurtosis is beneficial or not is not so clear. For instance, for an investor

with high selection ability, a fat tail would be more desirable. This is why the

kurtosis aversion coefficient D is set to zero in this thesis.

The standard deviation of the portfolios’ return multiple is a risk indicator for the

return dispersion for a given investment strategy. In this context, the standard deviation

is defined as:

σp =

√∑n
i=1(TV PIi − TV PI)

n

where σp is the standard deviation of the given investment strategy, TVPI is the final

return of the portfolioi and n is the number of simulated portfolios for the given number

of funds, investment period etc.

Other measures are the skewness-to-risk ratio and the risk-return ratio. The skewness-

to-risk ratio tries to capture the trade-off between skewness (which is utility-enhancing

for investors) and risk.

Skewness− to− risk =
Skewness

σi

The risk-return ratio is similar, but not equal, to the sharpe ratio. It captures the

trade-off between the reduced average return multiple and the reduced risk from diver-

sification. Risk-return

SR =
((TV PIi − 1)

σi

For comparing different distributions, I used a Mann-Whitney-Wilcoxon (MWW)

test. The MWW is a nonparametric test of the null hypothesis that independent two

samples come from the same population. The MWW test can also be used to determine

whether the one population tends to have larger values than the other. In that sense,

the MWW test is similar to a t-test. Unlike the t-test, however, the MWW does not

require the assumption of normal distributions. MWW has a power advantage when

one of the samples is drawn from a skewed, a peaked distribution or a mutimodal dis-

tribution De Winter and Dodou (2010). I used the MWW in particular to compare

the PERACS Risk CoefficientTM of simulated portfolios under different circumstances.

For example, when I compared US and European buyout funds, the MWW test indi-

cated which of the two samples of simulated portfolios had the higher PERACS Risk

CoefficientTM value.
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4.5 Limitations of the Model

The Total Value to Paid In (TVPI) return multiple does not incorporate the time value

of money nor the opportunity costs of capital.

As expected, the average returns remain relatively stable when comparing Funds and

FoFs, and kurtosis and skewness all decrease. However, my simulations do not account

for the diseconomies of scale and program size, which would normally decrease returns.

The coefficients in the utility function are set arbitrarily. They do not account for

different risk-return preferences of individual investors or types of investors. Rather, an

average investor with a high preference for a high average return is assumed.
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5 Results

5.1 Hypothesis 1: Overall dataset and diversification level

Hypothesis 1a: The risk of Funds and Funds of Funds is reduced as the number of

investments and funds, respectively, is increased. The diversification effect can already

be seen when comparing the median & average risk-return profile of Private Equity Funds

and Funds of Funds.

Table 4 shows the TVPI of simulated FoFs with different number of funds in the portfolio

and an investment period of five years. I used the overall dataset, equal portfolio weights

and a random investment rhythm to simulate the portfolios. Comparing the return

multiples of Funds (n = 1) and simulated FoFs (n > 1), it can be seen that the average

TVPI is relatively similar for Funds or FoFs, although it is worth mentioning that the

mean TVPI is reduced as n is increased. While both the minimum and maximum TVPI

revert to the mean as n is increased, the median TVPI is higher for any value for n other

than 1.

This is because the FoF distribution is less skewed with more funds in the portfolio,

as can be seen in 5. The Kernel distributions in figure 3 and figure 4 show that with

an increasing number of funds, the TVPI multiple of the portfolio is more concentrated

around the mean. The mean and median come closer, implying a more symmetric

distribution.

Figure 5 shows that the standard deviation of FoF returns is reduced as n is increased.

Similarly, the worst 99th percentile of the 1000 simulated portfolios in terms of perfor-

mance already averages a TVPI above 1 with 10 underlying funds, and the probability

of a loss is reduced to 0.0000% with 15 underlying funds (Table 5).

Hypothesis 1b: At the same time, the marginal diversification benefit of increasingly large

portfolios decreases rapidly (as can be measured by the number of investments or Funds

in the portfolio). There exists a number of Funds beyond which the marginal cost exceeds

the marginal benefit of diversification.

The utility of the hypothetical average investor can be seen in figure 6. For both the

overall dataset as well as the combined data of buyout and venture capital funds, the

utility sharply increases as n is increased. It can be seen that the distribution of FoF

returns has much thinner tails and is less skewed than the distribution of individual fund

returns. Interestingly, the skewness and kurtosis of the overall dataset become negative

for n = 100.
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However, the utility then levels off around 20 to 30 funds in the portfolio. For both

datasets, the utility reaches a maximum at n = 25. This is mainly due to the variance

reduction, as the variance coefficient in the utility function is set to 4. Figure 5 shows the

reduction in skewness, which is unfavorable for the investor, but is outweighted by the

reduction in variance at first, as can be seen in figure 6. The skewness coefficient in the

utility function is set to 2. Thus, the utility is increased as n is increased. However, as n

is increased, the return multiple is reduced, thus decreasing the utility for n > 30. As n is

increased, the marginal diversification benefit of increasingly large portfolios (measured

by the number of investments or Funds in the portfolio) decreases rapidly: not only

will the investor incur additional costs, but the investor will aslo give up some chances

to reap some extraordinary returns. Therefore, the utility function shows a plateau at

n = 25 given the assumed utility function and the used dataset.

To sum up, there exists a trade-off between a lower risk level through diversification and

diminishing returns paired with reduced marginal benefits of diversifiaction. As Borel

(2004) states, ”LPs have recognized that beyond a certain point, the return of any addi-

tional diversification is likely to diminish [...] To avoid such a regression though excess

diversification to an undesired mean, a growing number of investors are aggressively

cutting back on the number of managers they want to commit the money to.”

Table 4: Results of overall dataset - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.89 0.02 26.04 1.66

2 5 1000 1.83 0.91 11.26 1.69

3 10 1000 1.82 1.05 6.42 1.72

4 15 1000 1.80 1.07 6.10 1.70

5 20 1000 1.76 1.23 3.63 1.69

6 25 1000 1.76 1.25 3.34 1.70

7 30 1000 1.74 1.34 2.73 1.70

8 50 1000 1.71 1.38 2.26 1.70

9 100 1000 1.71 1.56 1.83 1.71

Table 5: Results of overall dataset - Other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.2502 0.2500 0.0930 9.1209437 150.0552728 7.4586754

2 5 0.6664 1.1157 0.0020 5.6836052 56.1702306 8.3306263

3 10 0.4356 1.2410 0.0000 3.4719559 22.6261095 8.0513235

4 15 0.4322 1.2806 0.0000 3.2074234 17.7173444 7.8824425

5 20 0.3036 1.3415 0.0000 2.2315254 7.9658189 7.5924895

6 25 0.2868 1.3675 0.0000 2.1754197 7.8843927 7.6007282

7 30 0.2130 1.3850 0.0000 1.0617311 2.0447091 7.2276795

8 50 0.1516 1.4038 0.0000 0.5144963 0.8883850 6.9798532

9 100 0.0524 1.5958 0.0000 -0.0808798 -0.6320267 6.8003076
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Table 6: Buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.89 0.02 26.0413 1.66

2 5 1000 1.83 0.91 11.26 1.69

3 10 1000 1.82 1.05 6.42 1.72

4 15 1000 1.80 1.07 6.10 1.70

5 20 1000 1.76 1.23 3.63 1.69

6 25 1000 1.76 1.25 3.34 1.70

7 30 1000 1.74 1.34 2.73 1.70

8 50 1000 1.71 1.38 2.26 1.70

9 100 1000 1.71 1.56 1.83 1.71

Table 7: Buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.2502 0.2500 0.0930 9.1209437 150.0552728 7.4586754

2 5 0.6664 1.1157 0.0020 5.6836052 56.1702306 8.3306263

3 10 0.4356 1.2410 0.0000 3.4719559 22.6261095 8.0513235

4 15 0.4322 1.2806 0.0000 3.2074234 17.7173444 7.8824425

5 20 0.3036 1.3415 0.0000 2.2315254 7.9658189 7.5924895

6 25 0.2868 1.3675 0.0000 2.1754197 7.8843927 7.6007282

7 30 0.2130 1.3850 0.0000 1.0617311 2.0447091 7.2276795

8 50 0.1516 1.4038 0.0000 0.5144963 0.8883850 6.9798532

9 100 0.0524 1.5958 0.0000 -0.0808798 -0.6320267 6.8003076
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5.2 Hypothesis 2: Investment period

Hypothesis 2: There exists a risk-mitigating effect by increasing the investment period
and thus diversifying the vintage years in the portfolio. However, the diversification
effect is smaller than the diversification effect from increasing the number of funds in the
portfolio, as also shown by Mathonet and Weidig (2004).
In standard Private Equity FoFs, the total capital available gets invested mostly during
the investment period, i.e. the first three to five years of the funds lifetime, but also
afterwards, in a more targeted manner, to follow on the most successful investments
(Weidig et al. (2005)). The distributions of capital to limited partners are done as soon
as investments get exited, mostly during the divestment period, i.e. the remaining funds
lifetime. Therefore, Private Equity fund investments should be made over the full course
of the economic cycle and should not be concentrated in any one year to reduce the risk
of getting in or out at the wrong time. Thus, there should be a clear diversification
benefit by increasing the investment period length and thus diversifying vintage years in
the portfolio.14

Table 8 shows the TVPI of simulated FoFs with 25 funds in the portfolio for different in-
vestment periods. I used buyout funds, equal portfolio weights and a random investment
rhythm. Both the average and median TVPI increase with the length of the investment
period. The minimum TVPI for investment period lenghts ≤ 2 is above 1.

The risk measures are summarized in table 9. The standard deviation of the TVPI first
sharply increases from a 1-year investment period to 2 years, before it decreases from
investment period lengths 4 to 6. The utility goes up as the investment period length
increases, because both the skewness and the average return increase.

Figure 8 shows the evolution of different TVPI dispersion metrics for different investment
period lengths. In terms of standard deviation, portfolios with shorter investment periods
benefit most from adding funds to the portfolio. Portfolios with investment periods 1
and 2 have the lowest standard deviation for n ≤ 50. Both the skewness and kurtosis of
the portfolios are reduced significantly for all investment periods and decrease to almost
0 for investment periods 1 & 2.

The utility by number of Funds in figure 9 shows that the diversification benefit by
adding funds to the portfolio exists for all investment periods. The optimum level of
diversification is different for different investment periods, but is between 10 and 30 funds.
Generally, the utility increases if the investment period length is increased. However,
the effect on the investor’s utility is smaller in relative and absolute terms compared to
adding more funds to the portfolio.

The MWW test of the PERACS Risk CoefficientsTM for portfolios with 3 and 6 years
investment period length reveals no significant difference. At 0.05 significance level, I
conclude that the risk coefficients for the two period lengths are identical populations
for all values of n except for n = 30 (Table 10). Thus, a difference in risk cannot be
observed using the risk coefficients.

14In this thesis the EVCAs definition of vintage year as the year of fund formation and first drawdown
of capital is used.
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In short, I observe a diversification benefit of increasing the length of the investment
period. All risk and return metrics are improved by increasing the length of the in-
vestment period. This is intuitive, as the FoF investor gains more and more exposure
to the economic cylce and avoids having to choose the perfect timing. In the words of
Maximilian Broenner from LGT Capital Partners, ”analyzing the different fund raising
and return cycles over the last 20 years makes one thing very clear: the perfect timing
in an asset class which requires long-term commitment and does not offer daily liquidity
is rather impossible” (taken from Mathonet and Meyer (2008)).

Table 8: Investment Period: Results of buyout funds - TVPI

Investment Period Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.72 1.34 2.15 1.70

2 2 1000 1.71 1.33 2.43 1.67

3 3 1000 1.73 1.31 2.55 1.69

4 4 1000 1.73 1.31 2.88 1.69

5 5 1000 1.76 1.25 3.34 1.70

6 6 1000 1.74 1.30 3.40 1.69

Table 9: Investment Period: Results of buyout funds - Other measures

Investment Period Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.1931 1.3884 0 0.3391 -0.8107 6.9165

2 2 0.2055 1.3539 0 0.7953 0.6243 7.0069

3 3 0.2169 1.3812 0 0.8108 0.6223 7.0873

4 4 0.2268 1.3620 0 1.1056 1.8369 7.1980

5 5 0.2868 1.3675 0 2.1754 7.8844 7.6007

6 6 0.2602 1.3720 0 1.8833 6.0405 7.4601

Table 10: Results of one- and two-sided MWW test, CI=95% (PERACS Risk Coefficient
vs. Investment Period)

Number Funds p value (2-tail) p value (1-tail)

1 5 0.2518207 0.8741057

2 10 0.2910499 0.8544927

3 15 0.5352659 0.7323926

4 20 0.4059448 0.2029724

5 25 0.7967114 0.3983557

6 30 0.0000625 0.0000313

7 50 0.8654206 0.5673202

8 100 0.0000000 1.0000000

with H1 : PERACS Risk Coefficient3years > PERACS Risk Coefficient6years
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5.3 Hypothesis 3: Investment rhythm

Hypothesis 3: The diversification effect of increasing the number of underlying funds is
influenced by the investment rhythm.

Within the investment period, FoF portfolio managers can put different emphasis on
single vintage years. Intuitively, it is not enough to increase the length of the investment
period. Portfolio managers also need to make sure that emphasis on each vintage year
is relatively well diversified. Fund investments need to be spread over the investment
period in such a way that the weight of investments in any given vintage year does not
overwhelm that of other years to the harm of the overall portfolio return. I define the
”investment rhythm” as the method by which the number of funds from each vintage
year within the investment period is determined. In this thesis, the equal investment
rhythm and the random investment rhythm are compared. Simulated portfolios with an
equal investment rhythm have an equal number of Funds from each vintage year within
their investment period. For instance, a portfolio of 20 funds and an investment period
of 5 years consists of 4 funds from each vintage year. Simulated portfolios with a random
investment rhythm allocate a random number of Funds to each vintage year.

Table 11: Equal Rhythm: Results of buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.88 0.04 8.55 1.70

2 5 1000 1.92 0.98 8.34 1.81

3 10 1000 1.83 1.20 4.16 1.76

4 15 1000 1.81 1.18 4.04 1.75

5 20 1000 1.78 1.24 3.62 1.75

6 25 1000 1.78 1.30 2.36 1.77

7 30 1000 1.77 1.31 2.33 1.75

8 50 1000 1.77 1.54 2.07 1.77

9 100 1000 1.59 1.28 2.12 1.58

Table 12: Equal Rhythm: Results of buyout funds - Other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.8743 0.3399 0.0900 2.5831 14.0127 6.8404

2 5 0.5579 1.1079 0.0010 3.5067 27.1121 8.2295

3 10 0.3526 1.3190 0.0000 2.1051 7.3560 7.7781

4 15 0.3151 1.3440 0.0000 2.1871 7.8028 7.7768

5 20 0.2716 1.3614 0.0000 2.8111 14.4336 7.9130

6 25 0.1896 1.3588 0.0000 0.2337 0.1614 7.1132

7 30 0.1745 1.3727 0.0000 0.2419 0.2081 7.0910

8 50 0.0908 1.5862 0.0000 0.2292 -0.1137 7.1536

9 100 0.1100 1.3781 0.0000 1.2052 3.2075 6.7367
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Table 13: Random Rhythm: Results of buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.89 0.02 26.04 1.66

2 5 1000 1.83 0.91 11.26 1.69

3 10 1000 1.82 1.05 6.42 1.72

4 15 1000 1.80 1.07 6.10 1.70

5 20 1000 1.76 1.23 3.63 1.69

6 25 1000 1.76 1.25 3.34 1.70

7 30 1000 1.74 1.34 2.73 1.70

8 50 1000 1.71 1.38 2.26 1.70

9 100 1000 1.71 1.56 1.83 1.71

Table 14: Random Rhythm: Results of buyout funds - Other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.2502238 0.2500000 0.093 9.1209437 150.0552728 7.4586754

2 5 0.6664311 1.1156600 0.002 5.6836052 56.1702306 8.3306263

3 10 0.4356140 1.2410000 0.000 3.4719559 22.6261095 8.0513235

4 15 0.4321759 1.2806333 0.000 3.2074234 17.7173444 7.8824425

5 20 0.3036234 1.3414700 0.000 2.2315254 7.9658189 7.5924895

6 25 0.2868105 1.3675440 0.000 2.1754197 7.8843927 7.6007282

7 30 0.2130041 1.3849933 0.000 1.0617311 2.0447091 7.2276795

8 50 0.1516456 1.4038000 0.000 0.5144963 0.8883850 6.9798532

9 100 0.0524408 1.5957900 0.000 -0.0808798 -0.6320267 6.8003076

Table 15: Results of one- and two-sided MWW test, CI=95% (PERACS Risk Coefficient
vs. Investment Rhythm)

Number Funds p value (2-tail) p value (1-tail)

1 5 0.1100402 0.9449885

2 10 0.8969471 0.4484735

3 15 0.1187790 0.0593895

4 20 0.0000000 0.0000000

5 25 0.0000000 0.0000000

6 30 0.0000000 0.0000000

7 50 0.0000000 0.0000000

8 100 0.0000000 1.0000000

with H1 : PERACS Risk Coefficientequal > PERACS Risk Coefficientrandom for
1-tailed test
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Tables 11 to 14 summarize the risk-return characteristics of both investment rhythms.
I used buyout funds and venture capital funds with a 5-year investment period and
equal portfolio weights. For both investment rhythms, the average TVPI first increases
and then decreases, while the median TVPI gets closer to the average TVPI as n is
increased. However, for the equal investment rhythm the average TVPI for n > 30 is
reduced significantly from 2.04 (n = 25) to 1.59(n = 100).

I find that portfolios with random investment rhythm benefit more from adding funds to
the portfolio than those with random investment rhythm. Firstly, the standard deviation
of the TVPI for portfolios with random investment rhythm is higher for small number of
funds. However, for n = 5 to n = 25, the standard deviation for portfolios with random
investment rhythm is lower. Secondly, for an identical investment period, there is a lower
return dispersion for portfolios with equally distributed vintage years when compared to
randomly distributed vintage years. Nevertheless, figure 11 shows that, as n is increased,
the return dispersion for portfolios with random investment rhythm is reduced signif-
icantly and approximates the return dispersion of portfolios with an equal investment
rhythm. This means that increasing diversification leads to an over-proportionate risk
mitigating effect in portfolios with random investment rhythm. Intuitively, the simulated
portfolios with a random investment rhythm enjoy a double-diversification effect: not
only are more underlying funds added to the portfolio, but also the number of funds per
vintage year are more diversified.

As the number of underlying funds is increased, the distributions of the PERACS Risk
CoefficientTM become non-identical at a 0.05 significance level for n ≥ 20 (table 15).
Interestingly, the one-tail MWW test reveals that the risk coefficient tends to be larger
for equal investment rhythm portfolios only for 20 ≤ n ≤ 50. For those values, we can
reject the null hypothesis and accept the hypothesis that the risk coefficient is larger for
equal investment rhythm portfolios. For smaller and larger values of n, this holds not
true.

Figure 14 shows that the optimal level of diversification is at 25 funds for portfolios with
equal investment rhythm and 30 funds for portfolios with random investment rhythm.
The maximum for the equal investment rhythm is higher, but is very close the maximum
for the random investment rhythm. As n is increased, the number of investments per
vintage year is relatively well diversified - even for the random investment rhythm.
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Figure 11: Analysis of TVPI dispersion with different Investment Rhythm
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Excess kurtosis for random rhythm with 1 fund is above 200.
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5.4 Hypothesis 4: Size focus

Hypothesis 4: Portfolios of small-cap funds enjoy a disproportionate risk-mitigating effect
when the diversification level is increased (Gottschalg et al. (2015)).

As shown in the descriptive sample statistics already, the average performance of funds
from different fund size categories differs substantially. More precisely, large-cap funds
seem to substantially underperform mid-cap or small-cap funds. The same holds true
for performance dispersion, as Gottschalg et al. (2015) showed. I observe a similar trend
when analyzing the return dispersion of FoFs with different fund size category focus.15

Portfolios made up of large-cap funds have lower return dispersion than FoFs consisting
of small-cap funds, but Funds of Funds which focus on small-cap Private Equity funds
gain disproportionally from adding more funds to their portfolio.

For the analysis, I used buyout funds with a 5-year investment period, equal portfolio
weights and a random investment rhythm. As can be seen in tables 16 and table 18,
the minimum outcome of portfolios focused on small- and mid-cap funds converges to
the minimum outcome of the portfolios focused on large-cap funds. Figure 16 shows
the inverse relationship between portfolio size and return dispersion. One can also see
that small funds gain disproportionally from diversification. The standard deviation of
returns is initially higher for small-cap FoFs but is reduced for all size focus categories.

Table 20 shows that the PERACS Risk CoefficientsTM differ significantly for all portfolio
sizes (in terms of number of underlying funds). The 1-tailed test reveals that, at a 0.05
significance level, the risk coefficient for large-fund portfolios is smaller than for small-
and medium-fund portfolios.

In short, the size focus of the portfolio has an impact on the risk of the portfolio. The
size-focus of the portfolio and the return dispersion seem to have a negative correlation.
Portfolios consisting of small-cap funds have the highest return dispersion, while FoFs
containing large-cap funds have the lowest return dispersion. The analysis of the PER-
ACS Risk CoefficientsTM indicates that this reciprocal relationship also holds true for the
risk coefficients. At the same time, small-cap focused FoFs enjoy a greater risk-mitigating
effect from diversification.

15Kaplan and Schoar (2003) find that larger funds seem to perform slightly better than smaller funds
in the US. I also analyzed the impact of the size focus category on the risk-return profile of the simulated
portfolios for subsamples of funds from the US and Europe. However, the effects are statistically the
same for both regions.
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Table 16: Small and medium buyout funds (Smid) - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 500 1.77 0.02 11.46 1.6300000

2 5 500 1.81 0.92 6.31 1.7160000

3 10 500 1.77 1.16 4.52 1.7000000

4 15 500 1.76 1.23 4.12 1.7076667

5 20 500 1.78 1.31 3.58 1.7242500

6 25 500 1.77 1.30 3.34 1.7204000

7 30 500 1.76 1.34 2.84 1.7213333

8 50 500 1.72 1.38 2.25 1.6979000

9 100 500 1.71 1.60 1.85 1.7072000

Table 17: Small and medium buyout funds (Smid) - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.0147 0.2700 0.1120 5.0267009 42.4386663 6.7143831

2 5 0.5155 1.0900 0.0040 3.7212395 24.3050682 7.9289348

3 10 0.3832 1.2570 0.0000 2.7212083 13.2096934 7.6841459

4 15 0.3145 1.3052 0.0000 1.9758973 8.1744742 7.5166779

5 20 0.3169 1.3475 0.0000 2.3003938 8.3315123 7.6928388

6 25 0.3112 1.3243 0.0000 2.6042090 10.1103696 7.7545731

7 30 0.2343 1.3866 0.0000 1.4074569 3.1114789 7.3895516

8 50 0.1535 1.4078 0.0000 0.4028402 0.5384252 6.9498728

9 100 0.0510 1.6048 0.0000 0.0562936 -0.7617978 6.8506784

Table 18: Large buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 500 1.67 0.29 3.41 1.6200000

2 5 500 1.63 0.93 2.90 1.5820000

3 10 500 1.66 1.07 2.41 1.6015000

4 15 500 1.67 1.24 2.23 1.6233333

5 20 500 1.67 1.28 2.18 1.6222500

6 25 500 1.65 1.26 2.14 1.6222000

7 30 500 1.66 1.27 2.13 1.6346667

8 50 500 1.68 1.42 2.05 1.6465000

9 100 500 1.63 1.61 1.66 1.6246000

Table 19: Large buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.5020 0.4193 0.0640 0.4345125 1.0428286 6.3384931

2 5 0.2685 1.1437 0.0040 0.9700425 1.7857472 6.7174682

3 10 0.2238 1.2968 0.0000 0.8965626 0.6364111 6.8407726

4 15 0.1946 1.3339 0.0000 0.5914767 -0.4185641 6.7965243

5 20 0.1979 1.3090 0.0000 0.4868018 -0.6211102 6.7538952

6 25 0.1721 1.3563 0.0000 0.6883089 0.0381236 6.7653261

7 30 0.1657 1.3743 0.0000 0.6673012 0.0108411 6.7998575

8 50 0.1549 1.4342 0.0000 0.7527144 0.0223536 6.9246263

9 100 0.0095 1.6137 0.0000 1.0035969 0.0363586 6.8492030
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Table 20: Results of one- and two-sided MWW test, CI=95% (PERACS Risk Coefficient
vs. Size Focus, only large cap and smid focus)

Number Funds p value (2-tail) p value (1-tail)

1 5 8.612701e-12 4.306350e-12

2 10 1.265421e-27 6.327105e-28

3 15 7.439343e-45 3.719671e-45

4 20 9.628288e-36 4.814144e-36

5 25 2.304480e-42 1.152240e-42

6 30 6.762223e-43 3.381112e-43

7 50 5.609609e-69 2.804804e-69

8 100 5.753807e-165 2.876903e-165

with H1 : PERACS Risk Coefficientlarge < PERACS Risk Coefficientsmid for 1-tail
test

39



1 5 10 15 20 25 30 50 100

0
5

10
15

20
25

Small funds

Number of Funds

T
V

P
I

1 5 10 15 20 25 30 50 100

0
5

10
15

20
25

Medium funds

Number of Funds

T
V

P
I

1 5 10 15 20 25 30 50 100

0
5

10
15

20
25

Large funds

Number of Funds

T
V

P
I

1 5 10 15 20 25 30 50 100
0

5
10

15
20

25

Small and medium funds (Smid)

Number of Funds

T
V

P
I

1 5 10 15 20 25 30 50 100

0
5

10
15

20
25

Mixed

Number of Funds

T
V

P
I

Figure 16: Boxplot of TVPI dispersion by Size Focus
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5.5 Hypothesis 5: Portfolio weights

Hypothesis 5: Increasing the number of funds has a different risk-mitigating effect when
the portfolio weights within the Fund of Fund are allocated equally, randomly, or pro rata.

The weight allocation of each fund investment in the portfolio may differ across dif-
ferent Private Equity firms. Portfolio managers may want to increase the weight of
high-performing funds in their portfolio. This idea will be further discussed in subsec-
tion 5.7. In this subsection, I will analyze three different portfolio weight allocations:
equally, randomly and pro rata. Simulated portfolios with equal weight allocation have
equal weights for all funds in the portfolio. In simulated portfolios with random weight
allocation the weights are determined randomly. In simulated portfolios with pro rata
allocation the weight of each fund corresponds to each fund’s size relative to the sum of
all the fund sizes in the portfolio. I used buyout funds with a 5-year investment period
and a random investment rhythm.

Table 21 to table 26 show that the median TVPI is increased by diversification for all
weight allocation techniques, while the average TVPI is decreased. The returns do not
differ substantially. However, it is worth noting that the median and average TVPI is the
lowest for portfolios with pro rata weight allocation. This due to the size effect discussed
in subsection 5.4. There seems to be an inverse relationship between portfolio size and
performance. Portfolios with pro rata weights put more weight on larger funds in the
portfolio. On the other hand, equally-weighted portfolios put more weights on smaller
funds than larger funds. Thus, the average performance of equally-weighted portfolios
is higher than for pro-rata-weighted portfolios.

The higher risk-mitigating effect for small funds observed in section 5.4 should also hold
true when comparing pro rata and equal weight allocation. The difference in reduction of
standard deviation between the different techniques, however, is marginal (see figure 19).
This is because the simulated portfolios all come from the same size focus category (small,
medium, large). Thus, the emphasis on smaller or larger funds only leads to marginal
differences in terms of risk-return characteristics. Nevertheless, the utility of pro-rata-
weighted portfolios is higher for almost all values of n. This is due the higher skewness
of the return mutiple.

The MWW test also indicates that there is no statistically significant difference in risk
between the different weight allocations (table 27). This is in line with the previos
findings.

Thus, I cannot find evidence for the initial hypothesis that increasing the number of funds
has a different risk-mitigating effect when the portfolio weights are allocated equally,
randomly or pro rata. There risk profile of all three weight allocation methods are
identical at a 0.05 significance level.
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Table 21: Random weights: buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.89 0.02 26.04 1.66

2 5 1000 1.84 0.62 12.28 1.67

3 10 1000 1.82 1.07 5.56 1.71

4 15 1000 1.80 1.07 5.62 1.70

5 20 1000 1.76 1.22 4.27 1.70

6 25 1000 1.76 1.27 3.74 1.71

7 30 1000 1.74 1.30 2.73 1.71

8 50 1000 1.71 1.32 2.45 1.70

9 100 1000 1.71 1.50 1.92 1.71

Table 22: Random weights: buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.2502 0.2500 0.0930 9.1209437 150.0552728 7.4586754

2 5 0.7097 1.0374 0.0040 5.8950293 62.3832022 8.2821276

3 10 0.4544 1.1985 0.0000 3.1230321 16.9181590 7.9016196

4 15 0.4466 1.2527 0.0000 3.0375084 15.8210645 7.8005114

5 20 0.3308 1.2989 0.0000 2.5179848 11.2868996 7.6535291

6 25 0.2965 1.3402 0.0000 2.2239383 8.7226127 7.6055574

7 30 0.2250 1.3447 0.0000 0.9654032 1.6588512 7.1851014

8 50 0.1620 1.3653 0.0000 0.6070021 1.2245423 7.0042184

9 100 0.0642 1.5723 0.0000 0.0441796 -0.3455125 6.8392440

Table 23: Equal weights: buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.89 0.02 26.04 1.66

2 5 1000 1.83 0.91 11.26 1.69

3 10 1000 1.82 1.05 6.42 1.72

4 15 1000 1.80 1.07 6.10 1.70

5 20 1000 1.76 1.23 3.63 1.69

6 25 1000 1.76 1.25 3.34 1.70

7 30 1000 1.74 1.34 2.73 1.70

8 50 1000 1.71 1.38 2.26 1.70

9 100 1000 1.71 1.56 1.83 1.71

Table 24: Equal weights: buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.2502 0.2500 0.0930 9.1209 150.0553 7.4587

2 5 0.6664 1.1157 0.0020 5.6836 56.1702 8.3306

3 10 0.4356 1.2410 0.0000 3.4720 22.6261 8.0513

4 15 0.4322 1.2806 0.0000 3.2074 17.7173 7.8824

5 20 0.3036 1.3415 0.0000 2.2315 7.9658 7.5925

6 25 0.2868 1.3675 0.0000 2.1754 7.8844 7.6007

7 30 0.2130 1.3850 0.0000 1.0617 2.0447 7.2277

8 50 0.1516 1.4038 0.0000 0.5145 0.8884 6.9799

9 100 0.0524 1.5958 0.0000 -0.0809 -0.6320 6.8003
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Table 25: Pro rata weights: buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.89 0.02 26.04 1.66

2 5 1000 1.82 0.62 12.34 1.67

3 10 1000 1.82 1.07 6.74 1.70

4 15 1000 1.79 1.07 5.70 1.68

5 20 1000 1.75 1.22 4.08 1.67

6 25 1000 1.76 1.27 3.68 1.67

7 30 1000 1.73 1.30 2.79 1.69

8 50 1000 1.69 1.32 2.36 1.67

9 100 1000 1.68 1.50 1.82 1.68

Table 26: Pro rata weights: buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.2502 0.2500 0.0930 9.1209 150.0553 7.4587

2 5 0.6445 1.0430 0.0060 6.7028 85.3626 8.6678

3 10 0.4568 1.2829 0.0000 3.8794 28.9021 8.1379

4 15 0.4279 1.2645 0.0000 2.9187 14.0750 7.7641

5 20 0.3182 1.3298 0.0000 2.7468 13.1100 7.7202

6 25 0.3146 1.3599 0.0000 2.6592 11.6005 7.7088

7 30 0.2263 1.3693 0.0000 1.2366 2.0987 7.2392

8 50 0.1645 1.3918 0.0000 0.8509 1.5747 7.0064

9 100 0.0513 1.5826 0.0000 0.2712 -0.4957 6.8108

Table 27: Results of two-sided MWW test, CI=95% (PERACS Risk Coefficient vs.
Weight Allocation)

Number Funds p value (Equal vs. Pro Rata) p value (Equal vs. Random) p value (Random vs. Pro Rata)

1 5 1 1 1

2 10 1 1 1

3 15 1 1 1

4 20 1 1 1

5 25 1 1 1

6 30 1 1 1

7 50 1 1 1

8 100 1 1 1
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5.6 Hypothesis 6: Regional focus

Hypothesis 6: There exists a difference in the optimal number of funds in a Private
Equity portfolio depending on the regional focus of the fund.

For the analysis of the regional focus I simulated portfolios of buyout funds with a
10-year investment period, equal weights and a random investment rhythm. Only US-
and European-focused buyout funds were used. In the Preqin dataset, the geographic
location of the fund may differ from its regional focus.

Gottschalg et al. (2015) finds that the dispersion of returns is higher for European funds.
Weidig et al. (2005) finds differing results: US funds outperform European funds on
average, but show also higher return dispersion. This holds also true for the dataset
analyzed in this thesis. The lower bound of returns for US funds (0.04x) is lower than
the lower bound of TVPI for European funds (0.18x). At the same time, the highest
return multiple is higher for US funds (26.04x) than for European buyout funds (5.88x).
This is illustrated in figure 21. The results of the Mann-Whitney test show that these
differences between both markets are statistically significant for n = 1. Weidig et al.
(2005) argue that contractual differences between the two markets in combination with
different exit strategies are responsible for the performance gap. In the US, Initial Public
Offering (IPO) exits are the predominant exit strategy for buyout funds, whereas trade
sales are the most common exit strategy in Europe. Weidig et al. (2005) indicates that
this also applies to VC funds.

When comparing the risk-mitigating effect of adding more funds to the portfolio, the
average and median return of US and European funds converges. Comparing portfolios
consisting of US funds only, European funds only, or both regions in the same portfolio
(seen earlier), no reduced return dispersion can be observed due to geographic diversi-
fication. Interestingly, my analysis indicates that it is not advisable from a risk-return
point-of-view to mix different regions in the same portfolio for European funds. As
table 32 indicates, the differences in risk coefficients between European-focused or a ge-
ographically agnostic approaches are significant at a 0.05 significance level. Investors
should thus prefer a geographically mixed approach to a European focused approach
from a risk point of view. The MWW test indicates that US and European focused FoFs
have non-identical distributions of the risk coefficient. The utility seems to be higher for
FoFs consisting of US funds only than for European-only FoFs due to their skewness.
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Table 28: American buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.83 0.04 26.04 1.63

2 5 1000 1.79 1.03 7.18 1.68

3 10 1000 1.82 1.22 7.14 1.71

4 15 1000 1.82 1.23 5.50 1.71

5 20 1000 1.80 1.32 5.11 1.71

6 25 1000 1.80 1.38 4.36 1.71

7 30 1000 1.76 1.44 3.43 1.70

8 50 1000 1.73 1.50 3.01 1.71

9 100 1000 1.74 1.57 2.07 1.73

Table 29: American buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.3571 0.3200 0.0760 12.0817 203.4947 7.6526

2 5 0.5344 1.1839 0.0000 4.7388 33.2118 8.1504

3 10 0.5024 1.3700 0.0000 5.3667 41.7221 8.5761

4 15 0.4417 1.3833 0.0000 4.1808 24.0551 8.2798

5 20 0.3653 1.4445 0.0000 3.6793 19.4046 8.1768

6 25 0.3089 1.4843 0.0000 3.2444 16.0685 8.0754

7 30 0.2523 1.5045 0.0000 2.9210 10.7061 7.9008

8 50 0.1669 1.5468 0.0000 3.5645 17.8835 8.0697

9 100 0.0786 1.5980 0.0000 0.9997 2.0251 7.2761

Table 30: European buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.71 0.18 5.88 1.58

2 5 1000 1.68 0.90 3.07 1.58

3 10 1000 1.69 1.14 2.86 1.59

4 15 1000 1.71 1.22 2.71 1.61

5 20 1000 1.70 1.23 2.52 1.62

6 25 1000 1.72 1.28 2.59 1.64

7 30 1000 1.71 1.28 2.43 1.65

8 50 1000 1.66 1.36 2.13 1.65

9 100 1000 1.77 1.61 1.94 1.76

Table 31: European buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.7187 0.5600 0.0980 1.7216 5.5333 6.3867

2 5 0.3856 1.0620 0.0060 0.9377 0.5441 6.7533

3 10 0.3301 1.2310 0.0000 1.0160 0.4023 6.8926

4 15 0.3055 1.3033 0.0000 0.7713 -0.3678 6.9178

5 20 0.2921 1.3250 0.0000 0.7421 -0.5394 6.8952

6 25 0.2917 1.3240 0.0000 0.5814 -0.9346 6.9050

7 30 0.2756 1.3440 0.0000 0.6254 -0.7352 6.8989

8 50 0.1778 1.4006 0.0000 0.2613 -0.9544 6.6467

9 100 0.0737 1.6525 0.0000 0.5406 -0.7111 7.2494
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Table 32: Result of one- and two-sided MWW test, CI=95% (PERACS Risk Co-
efficient vs. Region Focus)

Number Funds p value (2-tail, usa vs. europe) p value (1-tail, use vs. europe)* p value (1-tail, europe vs. mixed)**

1 5 1.881152e-06 9.405762e-07 1.626849e-03

2 10 1.993039e-10 9.965195e-11 2.369707e-08

3 15 7.588529e-11 3.794265e-11 2.107054e-04

4 20 2.289305e-16 1.144652e-16 2.971361e-12

5 25 8.583294e-21 4.291647e-21 9.042932e-07

6 30 1.617264e-28 8.086322e-29 2.436449e-19

7 50 4.477186e-81 2.238593e-81 2.371676e-66

8 100 8.126925e-151 4.063462e-151 3.336124e-135

* H1 : PERACS Risk Coefficientusa > PERACS Risk Coefficienteurope
** H1 : PERACS Risk Coefficienteurope < PERACS Risk Coefficientmixed
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Figure 21: Boxplot of TVPI dispersion by Region Focus
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5.7 Hypothesis 7: Selection ability

Hypothesis 7: Investors with a low selection ability enjoy a higher risk-mitigating effect
from increasing the number of funds in the portfolio than investors with a high selection
ability.

Due to the high return dispersion of Private Equity investments and funds compared
to other asset classes, Private Equity managers aim at identifying the best-performing
funds early. By design, not all portfolio managers can pick funds that perform higher
than the average. As already indicated in section 3.1, an investor’s fund selection ability
significantly influences the performance of the corresponding portfolio. Besides perfor-
mance, it is interesting to see what impact an investor’s fund selection ability has on the
risk of the corresponding portfolio and the risk-mitigating effect of diversification.

I used buyout funds to simulate 18,000 portfolios with a 5-year investment period, equal
weights and a random rhythm. I simulated three different types of portfolios:

• only upper median Private Equity funds, i.e. best and second best performance
quartiles (”upper median”)

• only lower median private equity funds, i.e. second lowest and lowest performance
quartiles (”lower median”)

• Private Equity funds containing funds from random performance quartiles (”mixed”)

Figure 25 and 26 indicate that the risk for all three types of simulated portfolios is
reduced in terms of return dispersion and standard deviation. Mixed portfolios benefit
the most from adding funds to the portfolio. Lower median portfolios benefit more from
diversification than upper median funds. The probability of a loss is reduced from 19.20%
(n=1) to 1.50% (n=25) and even to 0%(n=100) for lower median portfolios (table 36).
This shows that even investors with low selection ability rarely suffer a loss of capital
at the end of the life of the primary fund investments when diversifying realtively well.
These findings are in line with Gottschalg et al. (2015), although Gottschalg finds that
lower median portfolios’ average return multiple is above 1 for n=50. On the other
hand, upper median portfolios benefit less from diversification. For smaller portfolio
sizes, the distribution of return multiples is positively skewed and has kurtosis above
1 (table 34). This combination is advantageous, as the return distribution is shifted
to the right of the normal distribution with fat positive tails. As the portfolio size is
increased, the kurtosis turns negative and the skewness of the distribution is reduced
significantly. Thus, the utility for upper median investors is reduced as n is increased.
Lower median investors, whose returns are initially negatively skewed, increase their
utility by increasing the portfolio size (figure 27). The risk-return ratio for all three
types of portfolios is improved for increasing portfolio sizes(figure 28).

Table 37 shows the results of the MWW test for portfolios of upper and lower median
funds. The table shows that the distributions of risk coefficients for both subsets are
non-identical at a 0.05 significance level. Additionally, the 1-tail test indicates that the
risk coefficients for upper median FoFs tend to be lower than for lower median FoFs.
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In short, I find evidence that supports hypothesis 7. Portfolios of funds with exclusively
low-performing funds enjoy a higher diversification effect than portfolios of funds that
contain funds with a high selection ability exclusively. Portfolios with a mix of low- and
high-performing funds enjoy the strongest risk-mitigating effect.
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Table 33: Upper median buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 2.21 1.28 13.50 2.04

2 5 1000 2.29 1.51 11.57 2.15

3 10 1000 2.28 1.54 7.48 2.10

4 15 1000 2.26 1.62 6.73 2.14

5 20 1000 2.27 1.64 6.48 2.15

6 25 1000 2.23 1.65 5.73 2.11

7 30 1000 2.20 1.66 3.72 2.15

8 50 1000 2.16 1.70 2.83 2.12

9 100 1000 2.11 1.89 2.34 2.08

Table 34: Upper median buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.8869 1.3800 0 5.7623 56.4726 9.1835

2 5 0.7678 1.5619 0 5.3904 48.6134 9.8120

3 10 0.7217 1.6080 0 3.7996 19.4195 9.3279

4 15 0.6249 1.6440 0 3.4067 16.5721 9.3581

5 20 0.5919 1.6760 0 3.3839 16.3578 9.5239

6 25 0.4903 1.6936 0 2.8143 13.1163 9.3736

7 30 0.3744 1.6996 0 1.4792 3.5551 9.0460

8 50 0.2617 1.7396 0 0.2524 -0.9861 8.6025

9 100 0.1384 1.9166 0 0.3610 -1.3608 8.5135

Table 35: Lower median buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 1000 1.30 0.02 3.29 1.33

2 5 1000 1.30 0.45 2.73 1.28

3 10 1000 1.31 0.78 2.24 1.29

4 15 1000 1.30 0.85 2.20 1.29

5 20 1000 1.29 0.87 2.08 1.29

6 25 1000 1.28 0.89 1.65 1.29

7 30 1000 1.28 0.95 1.61 1.30

8 50 1000 1.26 0.95 1.48 1.28

9 100 1000 1.30 1.25 1.35 1.30

Table 36: Lower median buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.3976 0.1800 0.1920 -0.0356 1.7918 4.8607

2 5 0.2449 0.8319 0.0650 0.9924 4.1554 5.3738

3 10 0.1870 0.9338 0.0270 1.1418 3.3392 5.5262

4 15 0.1685 0.9393 0.0200 1.4038 5.2604 5.5718

5 20 0.1469 0.9925 0.0130 0.9183 3.2840 5.4027

6 25 0.1257 0.9772 0.0150 -0.0901 -0.2096 5.0654

7 30 0.1193 0.9996 0.0110 -0.1254 -0.2491 5.0376

8 50 0.1011 1.0025 0.0100 -0.6363 -0.0803 4.8550

9 100 0.0135 1.2635 0.0000 -0.3726 0.7001 5.1156
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Table 37: Results of one- and two-sided MWW test, CI=95% (PERACS Risk
Coefficient vs. Selection Ability)

Number Funds p value (2-tail) p value (1-tail)

1 5 8.805704e-135 4.402852e-135

2 10 1.389929e-212 6.949644e-213

3 15 1.567828e-251 7.839141e-252

4 20 9.700992e-271 4.850496e-271

5 25 1.251079e-285 6.255394e-286

6 30 1.046114e-288 5.230568e-289

7 50 5.137840e-308 2.568920e-308

8 100 0.000000e+00 0.000000e+00

with H1 : PERACS Risk Coefficientup < PERACS Risk Coefficientlow for
1-tail test
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5.8 Hypothesis 8: Fund types

Hypothesis 8: Increasing the number of funds has a different risk-mitigating effect for
different fund types.

In the subsections 8.2 to 8.7 I have looked at buyout funds exclusively. For this subsection
I used subsets of the corresponding fund types and simulated portfolios with a 10-year
investment period, equal weights and a random investment rhythm. Figure 29 shows the
return dispersion for different fund types. Simulated portfolios made up of early stage
funds, while having the most upside potential, are the most dispersed. VC funds are more
dispersed than buyout funds. Real estate FoFs are the least dispersed. All fund types
enjoy a risk-mitigating effect from diversification. The standard deviation is reduced for
all fund types with an increasing number of underlying funds (30). However, the risk
of portfolios made up of VC funds is less mitigated by diversification. The standard
deviation of VC funds stays relatively high, while the average return multiple is slightly
reduced. Thus, the risk-return ratio shown in figure 32 stays flat for VC funds, while
FoFs made up of other fund types improve their risk-return characteristics by increasing
their diversification level. Interestingly, the simulated portfolios that contain several
fund types in the same portfolio seem to benefit less from diversification than portfolios
that contain only one fund type. The standard deviation of the mixed portfolios drops
sharply until 10 underlying funds, then stays flat and even increases slightly for n > 30.
The utility, however, is relatively high for mixed portfolios, as the skewness stays high
compared to the four fund types.

The MWW test of the PERACS Risk CoefficientsTM in table 46 indicates that the
distributions of risk coefficients are non-identical for buyout and vc funds. Furthermore,
the risk coefficient tends to be larger for vc funds than for buyout funds. The portfolios
that consist of buyout funds are non-identical in terms of risk coefficients compared to
mixed funds.

Buyout funds typically acquire or invest in financially and strategically attractive com-
panies in mature industries. Buyout funds invest in more mature businesses. On the
other hand, VC funds generally invest in earlier stage companies with higher failure
rate, but higher upside. Thus, buyout funds should have a lower risk level than VC
funds or early stage funds. I observe this relationship for the simulated funds. The
smaller risk-mitigating effect from diversification for VC funds might be due to the lim-
ited number of good investment opportunities in the VC universe (see Jeng and Wells
(2000),Cochrane (2005),Weidig et al. (2005) and Black and Gilson (1999)). When adding
more VC funds to the portfolio, portfolio managers have to revert to less favorable in-
vestment opportunities. This begs the question, however, why early stage funds enjoy
a higher risk-mitigating effect. Early stage funds are generally considered part of the
VC universe. Kaplan and Schoar (2003) find no significant statistical difference in the
performance between the early and the late stage funds for the European and the US
market. This question was not further investigated in this thesis.

In short, the risk-mitigating effect of increasing the diversification level tends to be
different for different fund types. While buyout, real estate and early stage funds improve
their risk-return characteristics significantly, VC funds and mixed portfolios seem to
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benefit less from diversification.
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Table 38: Buyout funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 500 1.73 0.06 8.55 1.60

2 5 500 1.79 0.89 7.31 1.68

3 10 500 1.76 1.12 3.83 1.68

4 15 500 1.77 1.14 4.20 1.68

5 20 500 1.76 1.22 5.08 1.69

6 25 500 1.78 1.31 3.65 1.70

7 30 500 1.77 1.34 3.37 1.70

8 50 500 1.72 1.40 2.86 1.71

9 100 500 1.74 1.58 2.06 1.73

Table 39: Buyout funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.7192 0.4192 0.0760 2.7489 18.2507 6.7926

2 5 0.5480 1.1535 0.0020 5.2439 43.2660 8.3089

3 10 0.3591 1.2725 0.0000 2.1748 7.4993 7.5215

4 15 0.3466 1.3270 0.0000 2.7051 11.9528 7.7314

5 20 0.3449 1.3320 0.0000 4.0305 29.7252 8.1469

6 25 0.2891 1.3904 0.0000 2.1088 7.1943 7.6552

7 30 0.2968 1.3997 0.0000 2.2781 7.1864 7.6801

8 50 0.1672 1.4056 0.0000 2.3252 12.9519 7.6013

9 100 0.0805 1.6067 0.0000 0.9429 1.4222 7.2560

Table 40: VC funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 500 1.84 0.07 11.48 1.38

2 5 500 1.80 0.48 10.90 1.48

3 10 500 1.72 0.74 6.10 1.53

4 15 500 1.80 0.88 7.15 1.53

5 20 500 1.77 0.87 5.89 1.54

6 25 500 1.80 0.98 5.24 1.55

7 30 500 1.86 0.97 5.38 1.59

8 50 500 1.92 1.08 4.47 1.66

9 100 500 1.48 1.13 2.95 1.39

Table 41: VC funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 1.5565 0.1498 0.2480 2.6022 9.0745 3.3724

2 5 1.0446 0.7177 0.1160 3.1106 15.8016 6.0395

3 10 0.7212 0.8819 0.0540 2.1658 6.4766 6.5613

4 15 0.7836 0.9713 0.0200 2.2641 7.6825 6.7132

5 20 0.7050 0.9909 0.0140 1.9526 4.8094 6.7492

6 25 0.7183 1.0436 0.0020 1.8636 4.1264 6.7745

7 30 0.7308 1.0706 0.0020 1.6661 2.9735 6.9111

8 50 0.6962 1.1076 0.0000 1.2569 1.1417 7.1295

9 100 0.3186 1.1458 0.0000 2.1664 4.8740 6.4439
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Table 42: Real Estate funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 500 1.35 0.10 3.44 1.39

2 5 500 1.39 0.75 2.39 1.38

3 10 500 1.41 0.88 2.11 1.39

4 15 500 1.40 0.92 2.09 1.39

5 20 500 1.40 0.99 2.04 1.38

6 25 500 1.40 1.00 2.08 1.38

7 30 500 1.41 1.08 2.03 1.39

8 50 500 1.42 1.10 1.93 1.40

9 100 500 1.34 1.16 1.63 1.33

Table 43: Real Estate funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 0.5047 0.2790 0.2320 0.2152 1.2477 4.9600

2 5 0.2594 0.7958 0.0620 0.2278 0.2298 5.5004

3 10 0.2036 1.0100 0.0040 0.2574 -0.1022 5.6308

4 15 0.1957 1.0310 0.0080 0.4836 0.3835 5.6718

5 20 0.1715 1.0525 0.0020 0.3764 0.0511 5.6675

6 25 0.1702 1.1091 0.0000 0.4208 -0.0874 5.6977

7 30 0.1688 1.1033 0.0000 0.5193 0.0839 5.7564

8 50 0.1491 1.1559 0.0000 0.8277 0.7043 5.9085

9 100 0.0752 1.2076 0.0000 1.0708 2.0453 5.7070

Table 44: Early Stage funds - TVPI

Number of Funds Number of simulated FoFs Average TVPI Minimum TVPI Maximum TVPI Median TVPI

1 1 500 1.96 0.06 15.68 1.40

2 5 500 2.08 0.55 9.99 1.68

3 10 500 2.04 0.71 7.10 1.70

4 15 500 1.95 0.90 5.77 1.66

5 20 500 1.91 0.92 5.38 1.69

6 25 500 1.89 0.87 4.60 1.72

7 30 500 1.79 0.91 4.22 1.64

8 50 500 1.68 1.11 2.18 1.68

9 100 500 1.57 1.38 1.69 1.56

Table 45: Early Stage funds - other measures

Number of Funds Standard deviation Worst 99th percentile Probability of a loss Skewness Kurtosis Utility

1 1 2.2502 0.1700 0.3440 3.9498 18.1786 -0.9811

2 5 1.3913 0.7260 0.0940 2.9127 11.0248 5.4221

3 10 1.1220 0.8677 0.0360 2.4772 6.7613 6.4678

4 15 0.9099 1.0152 0.0080 2.3168 5.6156 6.9192

5 20 0.7967 1.0274 0.0060 2.0677 4.8477 7.0498

6 25 0.7383 1.0099 0.0100 1.8195 3.4572 7.0718

7 30 0.6190 1.0681 0.0060 2.0075 4.4258 7.0582

8 50 0.2732 1.2000 0.0000 0.0180 -1.1818 6.5720

9 100 0.0486 1.4302 0.0000 0.8065 2.5303 6.5414
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Table 46: Result of one- and two-sided MWW test, CI=95% (PERACS Risk Co-
efficient vs. Fund Type)

Number Funds p value (2-tail, buyout & vc) p value (1-tail, buyout & vc)* p value (2-tail, buyout & mixed)

1 5 2.004163e-83 1.002081e-83 1.131595e-23

2 10 4.086381e-134 2.043190e-134 1.980391e-58

3 15 9.054959e-166 4.527480e-166 8.919869e-71

4 20 1.365980e-178 6.829899e-179 7.287028e-91

5 25 4.277786e-194 2.138893e-194 1.218438e-107

6 30 1.838587e-194 9.192936e-195 3.369162e-112

7 50 3.183961e-213 1.591980e-213 1.225906e-133

8 100 2.511581e-219 1.255791e-219 8.220380e-168

* H1 : PERACS Risk Coefficientbuyout < PERACS Risk Coefficientvc
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6 Conclusion

In this paper, I show how to construct historically possible FoFs from fund performance
data. This allows me to derive a probability distribution of historically possible FoF
performances, and conclude on the risk profile of a FoF. The risk associated to a FoF
investment is significantly smaller than the one for a fund investment. I analyze several
fundamental drivers of the risk-mitigating effect of diversification for Private Equity
investments.

My findings point to the importance of diversification as an important tool to reduce
the portfolio’s capital risk. I show that the risk-mitigating effect of diversification is
visible across all subsamples. At the same time, the marginal benefit of diversification
is decreasing rapidly.

I investigate the importance of fundamental factors for the diversification effect. The
factors were investment period, investment rhythm, size focus, portfolio weights, geog-
raphy, selection ability and fund type. Most of the analyzed factos had a significant
impact on the diversification effect. Only portfolio weights had a negligible effect on the
risk-mitigating effect of increasing the number of underlying funds in the portfolio.

However, investors also need to make sure that their diversification level also fits their
investors’ preferences and risk aversion. This was demonstrated by an utility function
that includes average return, skewness and kurtosis with different weights. Depending on
the investor’s preferences and the aforementioned factors, there often exists an optimal
level of diversification that optimizes the portfolio risk-return characteristics.
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Appendix

6.1 Graphs and tables

Type Number of Funds Mean TVPI Median TVPI Minimum TVPI Skewness Kurtosis

1 Balanced 95 1.75 1.54 0.54 1.47 5.27

2 Buyout 1312 1.84 1.65 0.02 8.76 151.12

3 Co-investment 39 1.67 1.59 0.36 0.73 3.26

4 Co-Investment Multi-Manager 37 1.51 1.53 0.67 -0.14 2.96

5 Direct Secondaries 28 1.76 1.50 0.81 1.24 3.96

6 Distressed Debt 125 1.60 1.51 0.38 2.63 15.96

7 Early Stage 316 2.04 1.38 0.03 7.01 68.95

8 Early Stage: Seed 45 2.38 1.75 0.08 2.23 7.74

9 Early Stage: Start-up 48 1.52 1.11 0.09 3.12 16.04

10 Expansion / Late Stage 97 1.66 1.38 0.08 2.63 11.12

11 Fund of Funds 737 1.54 1.45 0.36 4.76 42.63

12 Growth 225 1.75 1.52 0.32 4.21 30.57

13 Infrastructure 109 1.44 1.31 0.38 1.41 5.52

14 Infrastructure Fund of Funds 5 1.29 1.26 1.19 0.23 1.28

15 Infrastructure Secondaries 1 1.30 1.30 1.30

16 Mezzanine 214 1.45 1.37 0.04 2.11 12.37

17 Natural Resources 130 1.92 1.52 0.15 3.24 16.00

18 Real Estate 890 1.41 1.40 0.00 0.70 6.45

19 Real Estate Co-Investment 4 1.72 1.68 1.59 0.58 1.76

20 Real Estate Fund of Funds 34 1.18 1.20 0.56 -0.15 2.61

21 Real Estate Secondaries 14 1.33 1.45 0.58 -0.36 2.05

22 Secondaries 143 1.59 1.52 0.87 1.60 7.25

23 Special Situations 56 1.79 1.52 0.53 4.37 26.64

24 Timber 16 1.30 1.14 0.86 2.93 10.89

25 Turnaround 22 1.55 1.41 0.30 1.54 7.13

26 Venture (General) 774 1.92 1.40 0.01 8.55 107.13

27 Venture Debt 23 1.66 1.45 1.04 3.50 15.22
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Figure 37: Skewness-to-risk ratio vs. Number of Funds (Investment rhythm)
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Figure 38: Skewness-to-risk Ratio vs. Number of Funds (Size Focus)
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Figure 39: Boxplot of TVPI dispersion by Weight Allocation

XVIII



−
2

0
2

4
6

8
10

Number of Funds

S
ke

w
ne

ss
−

to
−

ris
k 

ra
tio

−
2

0
2

4
6

8
10

−
2

0
2

4
6

8
10

1 5 10 15 20 25 30 50 100

Weights

Random

Equal

Pro Rata

Figure 40: Skewness-to-risk Ratio vs. Number of Funds (Weight Allocation)
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Figure 41: Skewness-to-risk Ratio vs. Number of Funds (Region Focus)
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Figure 42: Skewness-to-risk Ratio vs. Number of Funds (Selection Ability)
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Figure 43: Skewness-to-risk Ratio vs. Number of Funds (Fund Type)

6.2 Results of MWW and KW tests

6.2.1 Hypothesis 2

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction
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data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0
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95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location

-0.002216661

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_Period

W = 31634000, p-value = 0.22

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.005755094 0.001315167

sample estimates:

difference in location
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-0.002216661

6.2.2 Hypothesis 3

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863
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------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction
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data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Inv_rhythm

W = 31174000, p-value = 0.005291

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.009262445 -0.001606778

sample estimates:

difference in location

-0.005449863

6.2.3 Hypothesis 4

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus
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W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266
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sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Size_Focus

W = 3997400, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1167567 -0.1075266

sample estimates:

difference in location

-0.1122384
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6.2.4 Hypothesis 5

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 20
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Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1
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alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Weight

W = 31984000, p-value = 1

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.003552371 0.003552371

sample estimates:

difference in location

0

6.2.5 Hypothesis 6

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:
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0.04426966 0.05114092

sample estimates:

difference in location

0.04772601

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601

------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601
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------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Region_Focus

W = 39716000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.04426966 0.05114092

sample estimates:

difference in location

0.04772601
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6.2.6 Hypothesis 7

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 20
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Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16
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alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Selection_Ability

W = 58731000, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

0.2984181 0.3078652

sample estimates:

difference in location

0.3030973

6.2.7 Hypothesis 8

\textbf{MWW test for buyout funds and VC funds}

NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0
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95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location
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-0.3488882

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 7789300, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.3454019

sample estimates:

difference in location

-0.3488882

MWW test for buyout and mixed funds

NumFunds: 5
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Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 15

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type
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W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874
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sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 6351900, p-value < 2.2e-16

alternative hypothesis: true location shift is not equal to 0

95 percent confidence interval:

-0.1768476 -0.1660874

sample estimates:

difference in location

-0.1714745NumFunds: 5

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 10

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 15
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Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 20

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 25

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 30

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16
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alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 50

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745

------------------------------------------------------------------

NumFunds: 100

Wilcoxon rank sum test with continuity correction

data: Peracs by Fund_Type

W = 25408000, p-value < 2.2e-16

alternative hypothesis: true location shift is less than 0

95 percent confidence interval:

-Inf -0.168274

sample estimates:

difference in location

-0.1714745
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ments. In Präsentiert auf dem” 10th Symposium on Finance, Banking, and Insurance,
pp. 14–16.

Harris, R. S., T. Jenkinson, and S. N. Kaplan (2014). Private equity performance: What
do we know? The Journal of Finance 69 (5), 1851–1882.

Hochberg, Y. V., A. Ljungqvist, and Y. Lu (2007). Whom you know matters: Venture
capital networks and investment performance. The Journal of Finance 62 (1), 251–301.

Jeng, L. A. and P. C. Wells (2000). The determinants of venture capital funding: evidence
across countries. Journal of corporate Finance 6 (3), 241–289.

Jones, C. M. and M. Rhodes-Kropf (2003). The price of diversifiable risk in venture
capital and private equity. Unpublished working paper, Columbia University .

Kaplan, S. and A. Schoar (2003). Private equity performance: Returns, persistence and
capital. Technical report, National Bureau of Economic Research.

Korteweg, A. and M. Sorensen (2010). Risk and return characteristics of venture capital-
backed entrepreneurial companies. Review of Financial Studies 23 (10), 3738–3772.

Kothari, S. and J. B. Warner (2001). Evaluating mutual fund performance. The Journal
of Finance 56 (5), 1985–2010.

Kreuter, B., O. Gottschalg, and M. Zollo (2005). Truths and myths about determinants
of buyout performance. In EVCA Conference Journal, Volume 10.

XLVI



Kut, C. and J. Smolarski (2006). Risk management in private equity funds: a compara-
tive study of indian and franco-german funds. Journal of Developmental Entrepreneur-
ship 11 (01), 35–55.

Leung, T. N. J. (2013). A systematic risk analysis of listed private equity. The Journal
of Private Equity 16 (2), 93.

Lin, S.-J. and J.-R. Lee (2011, jul). Configuring a corporate venturing portfolio to create
growth value: Within-portfolio diversity and strategic linkage. Journal of Business
Venturing 26 (4), 489–503.

Liu, J. S. (2008). Monte Carlo strategies in scientific computing. Springer Science &
Business Media.

Ljungqvist, A. and M. Richardson (2003). The cash flow, return and risk characteristics
of private equity. Technical report, National Bureau of Economic Research.

Lopez-de Silanes, F., L. Phalippou, and O. Gottschalg (2015). Giants at the gate:
Investment returns and diseconomies of scale in private equity. Journal of Financial
and Quantitative Analysis 50 (03), 377–411.

Markowitz, H. (1952). Portfolio selection. The journal of finance 7 (1), 77–91.

Mathonet, P. and T. Weidig (2004). The risk profile of private equity.

Mathonet, P.-Y. and T. Meyer (2008). J-Curve exposure: Managing a portfolio of venture
capital and private equity funds. John Wiley & Sons.

Meyer, T. (2014). Private equity unchained. In Private Equity Unchained, pp. 267–272.
Springer.

Meyer, T. and T. Weidig (2003). Modelling venture capital funds. RISK-LONDON-RISK
MAGAZINE LIMITED- 16 (10), 89–92.

Peng, L. (2001). Building a venture capital index.

Phalippou, L. and O. Gottschalg (2009). The performance of private equity funds. Review
of Financial Studies 22 (4), 1747–1776.

Phalippou, L. and M. Zollo (2005). What drives private equity fund performance. Un-
published working paper .

Preqin (March 2014). Preqin special report: Private equity funds of funds. Technical
report, Preqin Ltd.

Robert, C. and G. Casella (2009). Introducing Monte Carlo Methods with R. Springer
Science & Business Media.

Scarpati, F. and W. Ng (2013). What really drives risk premium and abnormal returns
in private equity funds? a new perspective. The Journal Of Private Equity, Fall .

XLVII



Scherer, B. (2002). Portfolio resampling: Review and critique. Financial Analysts Jour-
nal 58 (6), 98–109.

Stein, R. (2014). Not fooled by randomness: Using random portfolios to analyse invest-
ment funds. Investment Analysts Journal 43 (79), 1–15.

Swensen, D. F. (2009). Pioneering portfolio management: An unconventional approach
to institutional investment, fully revised and updated. Simon and Schuster.

Taleb, N. N. (2012). Anti-fragile: How to Live in a World We Don’t Understand, Vol-
ume 3. Allen Lane London, UK.

Terhaar, K., R. Staub, and B. D. Singer (2003). Appropriate policy allocation for alter-
native investments. The Journal of Portfolio Management 29 (3), 101–110.

Weidig, T. (2002). Risk model for venture capital funds. Available at SSRN 365881 .

Weidig, T., A. Kemmerer, and B. Born (2005). The risk profile of private equity funds
of funds. The Journal of Alternative Investments 7 (4), 33–41.

XLVIII


	List of Figures
	List of Tables
	Introduction
	Diversification
	Private Equity and Modern Portfolio Theory
	The Impact of Diversification on the Portfolio
	The Benefits of Diversification
	The Limits to Diversification

	The "Optimal" Level of Diversification
	How to achieve Diversification

	Data
	Data sample and Descriptive Statistics
	Statistical Tests on Funds for Simulation

	Limitations of the dataset
	Possible Biases

	Framework & Model
	Monte Carlo Simulation
	Hypotheses
	Measures
	Performance Measures
	PERACS Risk CurveTM and PERACS Risk CoefficientTM
	Skewness and Kurtosis

	Other Measures
	Limitations of the Model

	Results
	Hypothesis 1: Overall dataset and diversification level
	Hypothesis 2: Investment period
	Hypothesis 3: Investment rhythm
	Hypothesis 4: Size focus
	Hypothesis 5: Portfolio weights
	Hypothesis 6: Regional focus
	Hypothesis 7: Selection ability
	Hypothesis 8: Fund types

	Conclusion
	Appendix
	Graphs and tables
	Results of MWW and KW tests
	Hypothesis 2
	Hypothesis 3
	Hypothesis 4
	Hypothesis 5
	Hypothesis 6
	Hypothesis 7
	Hypothesis 8


	Bibliography

